Computational Engineering   

Along with theory and experimentation, computer simulation has become the third mode of scientific discovery.  Tools like finite element analysis and uncertainty propagation allow our researchers to explore new frontiers in fluid dynamics, heat transfer, bioengineering, combustion, nanotechnology, materials modeling, design, and so much more.  Using the data from thousands of simulations, they can construct models that will ultimately benefit people in real-world situations.

And there's no better place to explore that science than Purdue.  We hosted the first computer science department in the country in 1962, and today, one of the top research supercomputer clusters in the country allows Purdue researchers to explore any possibility they can imagine.

Faculty in Computational Engineering

  • Fluid dynamics
  • Biomaterial
  • Multiphase flows
  • Non-Newtonian fluid dynamics
  • Microfluidics
  • Complex fluids
  • Soft matter
  • Adaptive structures
  • Mechanical metamaterials
  • Robotic materials
  • Programmable structures
  • Multistable structures
  • Structural nonlinearity
  • Elastic instabilities
  • Structural dynamics
  • Nonlinear vibrations
  • Modeling of nonlinear systems
  • Structural dynamics and localization
  • Flow-induced vibrations
  • Impacting systems
  • Bifurcations and chaos
  • Uncertainty propagation
  • Inverse problems
  • Propagation of information across scales
  • Optimal learning
  • Materials by design
  • Pressure gain combustion
  • Turbomachinery
  • High-speed internal flows
  • Aero-thermal focus on the integration of experiments with computational fluid dynamics
  • Predictive computational tools for biological adaptation processes
  • Tissue expansion
  • Wound healing
  • Reconstructive surgery optimization
  • Numerical methods for biological membranes
  • Indoor and outdoor airflow modeling by computational fluid dynamics (CFD) and measurements
  • Building ventilation systems
  • Indoor air quality (IAQ)
  • Energy analysis
  • Biomolecular nanomanufacturing
  • DNA origami and self-assembly
  • Optical nanoscopy and nanosensors
  • Bioinspired nanomechanical systems
  • Nanoscale energy conversion
  • Fluid mechanics
  • Nonlinear dynamics and chaos
  • Granular flow
  • Complex fluids, including particulate and multiphase flows
  • Microfluidics, including fluid--structure interactions
  • Wave phenomena in continuum mechanics
  • Applied mathematics and scientific computing
  • CFD of multiphase flows
  • Turbulent gas-liquid flows
  • Cavitation
  • Heat transfer
  • Sound quality
  • Signal Processing
  • Data analysis
  • System modeling and identification
  • Condition monitoring of machinery
  • Perception-based engineering
  • Seat-occupant modeling
  • Structural Dynamics and Control
  • Cyber-physical Systems
  • Machine Vision
  • Real-time Hybrid Simulation
  • Damage Detection and Structural Condition Monitoring
  • Cyberinfrastructure Development
  • Vibrations and nonlinear dynamics
  • Smart material systems
  • Non-pneumatic tires
  • Optimization of mechanical systems
  • Additive manufacturing
  • Laser-absorption spectroscopy, laser-induced fluorescence, & IR imaging sensors for gas temperature, pressure, velocity, and chemical species
  • Molecular spectroscopy, photophysics, & energy transfer in gases
  • Energetic materials (e.g., explosives & propellants) detection & combustion
  • Combustion and propulsion systems (small and large scale)
  • Biomedical sensing
  • Modeling and simulation techniques for multiphase and multiphysics problems using the phase-field method.
  • Isogeometric methods with applications in fluid and solid mechanics.
  • Modeling and simulation tools for several biomechanics problems, including tumor growth, cellular migration and blood flow at small scales.
  • Computational methods for fluid-structure interaction, especially when the problem involves complex fluids.
  • Predictive, multi-scale modeling and simulation of microstructure evolution in confined granular systems, with an emphasis in manufacturing processes and the relationship between product fabrication and performance.
  • Application areas of interest include:
  • (i) particulate products and processes (e.g., flow, mixing, segregation, consolidation, and compaction of powders),
  • (ii) continuous manufacturing (e.g., Quality by Design, model predictive control, and reduced order models), and
  • (iii) performance of pharmaceutical solid products (e.g., tensile strength, stiffness, swelling and disintegration), biomaterials (e.g., transport and feeding of corn stover) and energetic materials (e.g., deformation and heat generation under quasi-static, near-resonant and impact conditions, and formation and growth of hot spots) materials.
  • Sustainable energy and environment
  • Combustion and turbulent reacting flows
  • Combustion and heat transfer in materials
  • Biomedical flows and heat transfer
  • Global policy research
  • Application of Artificial Intelligence for Data-Driven Modeling, Analysis, Optimization and Control
  • Turbulence, Combustion, Sprays, and Particle Laden Flows
  • Multiscale and Multiphysics Modeling and Simulation
  • Renewable Energy
  • High Performance Computing
  • Computational solid mechanics
  • Multiscale modeling of materials
  • Finite Elements
  • Dislocation dynamics
  • Reliability of electronic interconnects
  • Shock compression in solids
  • Phase transformations
  • Energetic materials
  • Computational acoustics
  • Physical acoustics
  • Control of environmental noise
  • Outdoor sound propagation
  • Prediction and abatement of transportation noise
  • Speech intelligibility in built environments
  • Big data analysis and statistical machine learning
  • Predictive modeling and uncertainty quantification
  • Scientific computing and computational fluid dynamics
  • Stochastic multiscale modeling
  • Acoustic Source Modeling and sound field reconstruction
  • Active noise control
  • Room acoustics simulation and auralization
  • Noise control treatments
  • Human perception of noise
  • Fluid dynamics
  • Multiphase flows
  • Monte Carlo methods
  • Kinetic theory of granular flows
  • Heat transfer in granular media
  • Rarefied gas dynamics
  • Energy storage and conversion (batteries, fuel cells)
  • Mesoscale physics and stochastics
  • Reactive transport, materials, processing, and microstructure interactions
  • Cell and tissue mechanics
  • Human injury
  • Adult stem cell-based tissue regeneration
  • Biophysics and biotransport
  • Scalable nanomanufacturing: lithography and imaging
  • Optical and magnetic data storage
  • Nanoscale energy conversion, transfer and storage for alternative energy
  • Computational Design of Socio-Technical Systems
  • Secure Design and Manufacturing
  • Engineering Design by Self-Organized Virtual Communities
  • Integrated Products and Materials Design
  • Compact high speed turbomachinery: Design, analysis (experimental-numerical), cavity and tip flows, flow control
  • High speed propulsion: Novel cycle development, intakes, boundary layer transition, combustion
  • Development of measurement techniques and data processing
  • Human Skill and Augmentation
  • Collaborative and Hybridized Intelligence
  • Deep Learning of Shapes and Computer Vision
  • Human-Robot-Machine Interactions
  • Making to Manufacturing (M2M)
  • Factory of the Future and Robotics
  • Manufacturing Productivity
  • Simulations of nanoscale thermal transport
  • Machine learning, optimization, and high throughput design
  • Thermal management in electronics, space, and battery applications
  • Transport phenomena in additive manufacturing
  • Nanomaterials and devices for sustainable energy
  • Contact mechanics
  • Stresses, fatigue and friction of rolling/sliding
  • Micro-mechanics of boundary and mixed lubrication regimes
  • Spall initiation and propagation
  • Surface science and damage
  • Dynamics of ball and rolling element bearings and rotating systems
  • Friction induced vibration and squeal in dry contacts
  • Friction and wear of dry and lubricated contacts
  • Virtual tribology
  • Dry and lubricated fretting wear
  • MEMS for in-situ monitoring of tribological contacts
  • Discrete element modeling
  • Design
  • Large eddy and direct simulations
  • Turbulent Combustion
  • Thermoacoustics
  • Non-linear acoustics
  • Heat-and-mass transfer
  • Physical oceanography and limnology
  • Numerical methods for complex geometries
  • Structural Health Monitoring
  • Wave propagation
  • Structural dynamics and vibration control
  • Adaptive structures
  • Periodic structures and acoustic metamaterials
  • Energy harvesting
  • Thermoacoustics
  • Laser additive manufacturing
  • Ultrafast laser matter interaction
  • Laser welding
  • Laser assisted machining
  • Laser shock peening
  • Multi-physics, multi-scale modeling
  • Micro-nano manufacturing
  • Solid mechanics, multiscale and multiphysics modeling.
  • Design of engineering material systems.
  • Fracture and fatigue.
  • Microarchitectured materials.
  • Biomechanics of soft and hard tissues.
  • Computational solid mechanics
  • Computational geometry
  • Microelectronics reliability
  • Measurement science and instrumentation
  • Particle image velocimetry
  • Quantification of uncertainty
  • Multi-phase flows
  • Flow induced vibrations and hydro-kinetic energy
  • Biological flows
  • Biofluid mechanics
  • Biomedical cardiovascular devices
  • Heart failure and diastolic dysfunction
  • Discrete element method (DEM) modeling for particulate systems
  • -- model development, e.g., fibrous particles, particle breakage, particle shapes
  • -- application to manufacturing, e.g., storage and flow, blending, segregation, drying, coating, wet granulation
  • Finite element method (FEM) modeling of powder compaction
  • -- e.g., roll compaction, tableting, picking and sticking
  • Multi-scale modeling (FEM combined with DEM) of powder dynamics
  • -- model development and application to hopper flow, blending, and segregation
  • Electronics cooling and packaging
  • Phase-change transport phenomena
  • Microscale and nanoscale surface engineering for enhanced thermal transport
  • Energy efficiency in thermal systems
  • Transport in porous materials
  • Microscale diagnostics and sensing
  • Microfluidic MEMS devices
  • Development of new microfluidic diagnostic techniques
  • Biological flows at the cellular level
  • Micro-scale laminar mixing
  • Flow transitions and instabilities
  • Laser-matter interactions
  • Laser-induced plasma and laser-plasma interaction
  • Laser applications in manufacturing, materials processing, and other areas
  • Deformation, stress, plasticity, fracture
  • Multiscale modeling, first-principles, molecular dynamics simulations, and finite element modeling
  • In-situ experiments
  • Mechanics of redox active materials - Li-ion batteries, Na-ion batteries, all-solid-state batteries
  • Mechanics of polymeric materials - organic electrochromics, superelastic organic semiconductors