Heat Transfer   

Heat Transfer impacts nearly every area of industry, which is why Purdue hosts numerous laboratories dedicated to studying, enhancing, and pioneering new methods of heat transfer and energy conversion.  With this research, Purdue is answering the challenging questions:

  • How will we cool the avionics of future spacecraft?
  • What can make solar-powered energy more feasible?
  • Where does heat transfer improve on engine or battery performance?
  • How can nanomanufacturing create better electronics?
  • Can thermal therapy create new treatments for disease?

Faculty in Heat Transfer

  • Biomolecular nanomanufacturing
  • DNA origami and self-assembly
  • Optical nanoscopy and nanosensors
  • Bioinspired nanomechanical systems
  • Nanoscale energy conversion
  • Biotransport phenomena
  • Cell-fluid-matrix interaction
  • Microfluidics
  • 3D printing of soft materials
  • Nanoscale thermal transport and energy conversion
  • Electronics cooling and thermal management
  • Novel nanostructured materials and devices
  • Heat transfer
  • Boiling and two-phase flow
  • Materials processing
  • Electronic cooling
  • Thermal management of aerospace systems
  • Nuclear reactor safety
  • Energy storage and conversion (batteries, fuel cells)
  • Mesoscale physics and stochastics
  • Reactive transport, materials, processing, and microstructure interactions
  • Scalable nanomanufacturing: lithography and imaging
  • Optical and magnetic data storage
  • Nanoscale energy conversion, transfer and storage for alternative energy
  • Nanoscale heat transfer and energy conversion
  • Multiscale multiphysics simulations of nanomaterials for energy applications
  • Photovoltaic nanomaterials: simulation, synthesis, and devices
  • Thermoelectric nanomaterials: simulation, synthesis and devices
  • Nanoscale thermal radiation and nano-photonics
  • Multiphase combustion, particularly related to propellants, explosives, and pyrotechnics
  • Nanoscale composite energetic materials
  • Advanced energetic materials
  • Microscale combustion
  • Desalination & Water Treatment
  • Water-Food-Energy Nexus
  • Thermofluids
  • Nanotechnology
  • Membrane Science
  • Electronics cooling and packaging
  • Phase-change transport phenomena
  • Microscale and nanoscale surface engineering for enhanced thermal transport
  • Energy efficiency in thermal systems
  • Transport in porous materials
  • Microscale diagnostics and sensing
  • Heat transfer, particularly nano-scale and ultrafast heat transfer
  • Ultrafast laser materials processing and diagnostics
  • Nano-optics and laser-based nano-lithography

Research Areas