Biomedical   

Orthopedics. Tissue modeling.  Even the future of robotic microsurgery. Purdue’s focus on Bioengineering brings many disciplines together at world-class facilities.  Biomechanics can be tested on a human scale, while cutting-edge disease detection and treatment can be explored on the nanoscopic level.  Whether it’s the impact of a car seat on someone’s posture, or the impact of pharmacology on microorganisms, Purdue researchers are at the forefront of biomedical engineering.

Faculty in Biomedical

  • Fluid dynamics
  • Biomaterial
  • Multiphase flows
  • Non-Newtonian fluid dynamics
  • Microfluidics
  • Complex fluids
  • Soft matter
  • Light scattering
  • Discrete dipole approximation (DDA)
  • Biomedical optics
  • Instrument development for food safety
  • Optical characterization of soot
  • Growing robots
  • Soft robotics
  • Bioinspired systems
  • Wearable robots
  • Haptics
  • Soft matter
  • Predictive computational tools for biological adaptation processes
  • Tissue expansion
  • Wound healing
  • Reconstructive surgery optimization
  • Numerical methods for biological membranes
  • Multi-scale robotic manipulation and assembly
  • Mobile micro/nano robotics
  • Micro/nano aerial vehicles
  • Micro-Bio robotics
  • Mechatronics
  • MEMS/NEMS
  • Automation for the life sciences
  • Indoor and outdoor airflow modeling by computational fluid dynamics (CFD) and measurements
  • Building ventilation systems
  • Indoor air quality (IAQ)
  • Energy analysis
  • Biomolecular nanomanufacturing
  • DNA origami and self-assembly
  • Optical nanoscopy and nanosensors
  • Bioinspired nanomechanical systems
  • Nanoscale energy conversion
  • Sound quality
  • Signal Processing
  • Data analysis
  • System modeling and identification
  • Condition monitoring of machinery
  • Perception-based engineering
  • Seat-occupant modeling
  • Modeling and simulation techniques for multiphase and multiphysics problems using the phase-field method.
  • Isogeometric methods with applications in fluid and solid mechanics.
  • Modeling and simulation tools for several biomechanics problems, including tumor growth, cellular migration and blood flow at small scales.
  • Computational methods for fluid-structure interaction, especially when the problem involves complex fluids.
  • Predictive, multi-scale modeling and simulation of microstructure evolution in confined granular systems, with an emphasis in manufacturing processes and the relationship between product fabrication and performance.
  • Application areas of interest include:
  • (i) particulate products and processes (e.g., flow, mixing, segregation, consolidation, and compaction of powders),
  • (ii) continuous manufacturing (e.g., Quality by Design, model predictive control, and reduced order models), and
  • (iii) performance of pharmaceutical solid products (e.g., tensile strength, stiffness, swelling and disintegration), biomaterials (e.g., transport and feeding of corn stover) and energetic materials (e.g., deformation and heat generation under quasi-static, near-resonant and impact conditions, and formation and growth of hot spots) materials.
  • Biotransport phenomena
  • Cell-fluid-matrix interaction
  • Microfluidics
  • 3D printing of soft materials
  • Thermal stresses, thermal fracture and fatigue of advanced materials, in particular high temperature materials, ceramic coatings.
  • Mechanical behavior, design and remodeling of biological tissues, effect of stresses on remodeling, microbiomechanics of cell-extracellular matrix (ECM) interactions, tissue engineering
  • Wearable biomedical devices
  • 'Crack’-driven transfer printing technology
  • Scalable manufacturing technology
  • Mechanics and materials for flexible/stretchable electronics
  • Computational acoustics
  • Physical acoustics
  • Control of environmental noise
  • Outdoor sound propagation
  • Prediction and abatement of transportation noise
  • Speech intelligibility in built environments
  • Acoustic Source Modeling and sound field reconstruction
  • Active noise control
  • Room acoustics simulation and auralization
  • Noise control treatments
  • Human perception of noise
  • Cell and tissue mechanics
  • Human injury
  • Adult stem cell-based tissue regeneration
  • Biophysics and biotransport
  • Nonlinear Dynamics and Vibration
  • Resonant Micro/Nanosystems
  • Microscale Sensors and Actuators
  • MEMS, nanotechnology
  • BioMEMS
  • Biosensors
  • Protein detection
  • Aptamers (Nucleic-acid-based receptor molecules)
  • Structural Health Monitoring
  • Wave propagation
  • Structural dynamics and vibration control
  • Adaptive structures
  • Periodic structures and acoustic metamaterials
  • Energy harvesting
  • Thermoacoustics
  • Solid mechanics, multiscale and multiphysics modeling.
  • Design of engineering material systems.
  • Fracture and fatigue.
  • Microarchitectured materials.
  • Biomechanics of soft and hard tissues.
  • Measurement science and instrumentation
  • Particle image velocimetry
  • Quantification of uncertainty
  • Multi-phase flows
  • Flow induced vibrations and hydro-kinetic energy
  • Biological flows
  • Biofluid mechanics
  • Biomedical cardiovascular devices
  • Heart failure and diastolic dysfunction
  • Scanning Probe Microscopy
  • Metrology
  • Optomechanics
  • Mass spectrometry
  • Contact mechanics
  • Desalination & Water Treatment
  • Water-Food-Energy Nexus
  • Thermofluids
  • Nanotechnology
  • Membrane Science
  • Discrete element method (DEM) modeling for particulate systems
  • -- model development, e.g., fibrous particles, particle breakage, particle shapes
  • -- application to manufacturing, e.g., storage and flow, blending, segregation, drying, coating, wet granulation
  • Finite element method (FEM) modeling of powder compaction
  • -- e.g., roll compaction, tableting, picking and sticking
  • Multi-scale modeling (FEM combined with DEM) of powder dynamics
  • -- model development and application to hopper flow, blending, and segregation
  • Microfluidic MEMS devices
  • Development of new microfluidic diagnostic techniques
  • Biological flows at the cellular level
  • Micro-scale laminar mixing
  • Flow transitions and instabilities
  • Multiscale superfast 3D optical sensing
  • Biophotonic imaging
  • Optical metrology
  • Machine/computer vision
  • 3D video telepresence
  • 3D video processing
  • Virtual reality
  • Human computer interaction
  • Environment friendly design and life cycle engineering
  • Applications of bio-based materials in manufacturing
  • Fast and low-cost detection of pathogenic microorganisms
  • Biomass thermo-chemical upgrading for liquid and gaseous fuel