Transportation
We all need to get around -- but so does freight, and food, and even space cargo. To that end, Purdue researchers focus on making engines more efficient in cars and trucks, and perfecting the acoustics of tires and cabin interiors. They explore autonomous vehicles, and how they can actually make the roads safer. They work with aircraft companies to develop the next generation of jet engines. And they investigate the infrastructure of roads and systems, lending engineering expertise to one of the most vital industries in the world.
Faculty in Transportation
- Laser-absorption spectroscopy, laser-induced fluorescence, & IR imaging sensors for gas temperature, pressure, velocity, and chemical species
- Molecular spectroscopy, photophysics, & energy transfer in gases
- Energetic materials (e.g., explosives & propellants) detection & combustion
- Combustion and propulsion systems (small and large scale)
- Biomedical sensing
- Advancement of next-generation propulsion concepts including Rotating Detonation Engines (RDEs), Rotating Detonation Rocket Engines (RDREs) and Scramjet Engines
- Laser diagnostics development for applied thermal environments including RDEs, RDREs, gas-turbines, rockets, IC engines, and scramjet engines
- Laser Diagnostics and Spectroscopy for detonations, combustion, sprays, energetics, propellants, hypersonics, plasmas, and non-equilibrium flows
- Estimation of performance, efficiency and emissions using state of the art optical diagnostics (PLIF, CARS, TP-LIF, PIV, 3D Imaging, X-Rays, PIV, Molecular Tagging, Thermographic Phosphors and Pressure Sensitive Paints)
- Thermal-fluid behavior at the extremes, including turbulent, acoustically coupled, high-temperature, high-pressure, multiphase, and non-equilibrium reacting flows
- Contact mechanics
- Stresses, fatigue and friction of rolling/sliding
- Micro-mechanics of boundary and mixed lubrication regimes
- Spall initiation and propagation
- Surface science and damage
- Dynamics of ball and rolling element bearings and rotating systems
- Friction induced vibration and squeal in dry contacts
- Friction and wear of dry and lubricated contacts
- Virtual tribology
- Dry and lubricated fretting wear
- MEMS for in-situ monitoring of tribological contacts
- Discrete element modeling
- Design
- Two-Phase Flows and Heat Transfer
- High-Heat-Flux Thermal Management Systems for Several Applications, e.g., Outer Space Missions, Electric Vehicles, Ultra-Fast Charging Systems, Electronics Cooling, Avionics, Nuclear Reactors, Metal Manufacturing, Superconductors, Data Centers, etc.
- Gravitational Effects
- Experiments onboard the International Space Station (ISS)
- Two-Phase Flow Instabilities
- Fluid-Structure Interactions & Non-Newtonian Fluids in Biological Systems