Transportation   

We all need to get around -- but so does freight, and food, and even space cargo. To that end, Purdue researchers focus on making engines more efficient in cars and trucks, and perfecting the acoustics of tires and cabin interiors. They explore autonomous vehicles, and how they can actually make the roads safer. They work with aircraft companies to develop the next generation of jet engines. And they investigate the infrastructure of roads and systems, lending engineering expertise to one of the most vital industries in the world.

Faculty in Transportation

  • Modeling of nonlinear systems
  • Structural dynamics and localization
  • Flow-induced vibrations
  • Impacting systems
  • Bifurcations and chaos
  • Acoustics
  • Active and passive noise control
  • Sound field visualization
  • Structural acoustics and wave propagation in structures
  • Noise control material modeling
  • Applied signal processing
  • Modeling, analysis, and control of thermal systems
  • Indoor and outdoor airflow modeling by computational fluid dynamics (CFD) and measurements
  • Building ventilation systems
  • Indoor air quality (IAQ)
  • Energy analysis
  • Identify interactions and design spaces at the intersection of energy technologies, economics, and decision-making process to minimize the cost of transitioning to new, decarbonized energy systems
  • Sound quality
  • Signal Processing
  • Data analysis
  • System modeling and identification
  • Condition monitoring of machinery
  • Perception-based engineering
  • Seat-occupant modeling
  • Principles of aerial and aquatic locomotion in animals
  • Experimental fluid mechanics
  • Dynamics
  • Control
  • Bio-inspired robotics
  • Biologically inspired micro aerial vehicles and underwater robots
  • Bio-sensing and sensor fusion algorithms
  • Vibrations and nonlinear dynamics
  • Smart material systems
  • Non-pneumatic tires
  • Optimization of mechanical systems
  • Additive manufacturing
  • Laser-absorption spectroscopy, laser-induced fluorescence, & IR imaging sensors for gas temperature, pressure, velocity, and chemical species
  • Molecular spectroscopy, photophysics, & energy transfer in gases
  • Energetic materials (e.g., explosives & propellants) detection & combustion
  • Combustion and propulsion systems (small and large scale)
  • Biomedical sensing
  • Sustainable energy and environment
  • Combustion and turbulent reacting flows
  • Combustion and heat transfer in materials
  • Biomedical flows and heat transfer
  • Global policy research
  • Thermal sciences as applied to HVAC&R systems and equipment
  • Application of Artificial Intelligence for Data-Driven Modeling, Analysis, Optimization and Control
  • Turbulence, Combustion, Sprays, and Particle Laden Flows
  • Multiscale and Multiphysics Modeling and Simulation
  • Renewable Energy
  • High Performance Computing
  • Dynamic modeling and optimal control; model predictive control; decentralized control
  • Thermodynamics-based optimization; entropy generation minimization; exergy analysis
  • Integrated energy management and storage in distributed energy systems, building systems
  • Cooperative learning
  • Acoustics
  • Vibrations
  • Active noise and vibration control
  • Smart materials
  • Intelligent structures
  • Computational acoustics
  • Physical acoustics
  • Control of environmental noise
  • Outdoor sound propagation
  • Prediction and abatement of transportation noise
  • Speech intelligibility in built environments
  • Robotics
  • Marine Robotics
  • Unmanned Systems
  • Energy Autonomy
  • Systems Design
  • Coordination and Controls
  • Motion and vibration control
  • Adaptive control
  • Intelligent control using fuzzy logic and neural networks
  • Engine and emissions diagnostics
  • Robotics
  • Laser spectroscopy and imaging for combustion, sprays, energetics, hypersonics, plasmas, and non-equilibrium flows
  • Applications to gas-turbine, rocket, internal combustion, and scramjet engine performance, efficiency, and emissions
  • Thermal-fluid behavior at the extremes, including turbulent, high-temperature, high-pressure, multiphase, and non-equilibrium reacting flows
  • Heat transfer
  • Boiling and two-phase flow
  • Materials processing
  • Electronic cooling
  • Thermal management of aerospace systems
  • Nuclear reactor safety
  • Energy storage and conversion (batteries, fuel cells)
  • Mesoscale physics and stochastics
  • Reactive transport, materials, processing, and microstructure interactions
  • Gas turbine combustion
  • Internal combustion engines
  • Laser-based spectroscopy
  • Cell and tissue mechanics
  • Human injury
  • Adult stem cell-based tissue regeneration
  • Biophysics and biotransport
  • Compact high speed turbomachinery: Design, analysis (experimental-numerical), cavity and tip flows, flow control
  • High speed propulsion: Novel cycle development, intakes, boundary layer transition, combustion
  • Development of measurement techniques and data processing
  • Contact mechanics
  • Stresses, fatigue and friction of rolling/sliding
  • Micro-mechanics of boundary and mixed lubrication regimes
  • Spall initiation and propagation
  • Surface science and damage
  • Dynamics of ball and rolling element bearings and rotating systems
  • Friction induced vibration and squeal in dry contacts
  • Friction and wear of dry and lubricated contacts
  • Virtual tribology
  • Dry and lubricated fretting wear
  • MEMS for in-situ monitoring of tribological contacts
  • Discrete element modeling
  • Design
  • Large eddy and direct simulations
  • Turbulent Combustion
  • Thermoacoustics
  • Non-linear acoustics
  • Heat-and-mass transfer
  • Physical oceanography and limnology
  • Numerical methods for complex geometries
  • Model-based system and control design of commercial vehicle power trains
  • Connected and automated commercial vehicles
  • Internal combustion engine & after-treatment system design and controls
  • Flexible valve actuation in diesel and natural gas engines
  • Modeling and simulation of hydraulic systems
  • Modeling and testing of pumps and motors for fluid power applications
  • Hydraulic valves modeling and testing
  • Reduction of noise emissions in fluid power systems
  • Adaptive and robust control
  • Nonlinear control
  • Precision control of mechanical systems
  • Vehicle control
  • Robotics
  • Environment friendly design and life cycle engineering
  • Applications of bio-based materials in manufacturing
  • Fast and low-cost detection of pathogenic microorganisms
  • Biomass thermo-chemical upgrading for liquid and gaseous fuel