Advanced Materials   

The advanced materials research area is a focused multidisciplinary area focused on material synthesis, characterization and theory. Topics in this research area range from the development of material systems used sensors, metamaterials, hierarchal materials, nanomaterials, nanocomposites, thermoelectric materials, polymers, to composite materials. It also encompasses various methods such as additive manufacturing needed to realize these new material concepts.

Faculty in Advanced Materials

  • Adaptive structures
  • Mechanical metamaterials
  • Robotic materials
  • Programmable structures
  • Multistable structures
  • Structural nonlinearity
  • Elastic instabilities
  • Structural dynamics
  • Nonlinear vibrations
  • Renewable Energy Materials (physics-based energy yield predictions, sustainable PV and energy storage materials, recycling)
  • Electro-Optical-Thermo-Mechanical Reliability (in-situ and in-operando accelerated stress tests)
  • Heterogeneous Integration & Advanced Packaging (sub-10 μm pitch interconnects, low-loss interposers)
  • Harsh Environment Electronics Integration (high temperature Pb-free solders and nano-thermal interfaces)
  • Thermal Physics ... Heat Moving Energy
  • Spectroscopy ... "Seeing" energy with light
  • Nanophotonics ... Pushing light to see more
  • 2D Materials ... Creating functionality by losing dimension
  • DNA nanotechnology
  • Advanced materials
  • Bio-inspired and mechanically adaptive electronics
  • Multimaterial additive fabrication
  • Soft actuators (artificial muscles)
  • Wearable actuators (haptics)
  • Polymer design and polymer physics
  • Deformation sensors and transistors
  • Fluid Mechanics
  • Soft Matter
  • Granular Flow
  • Microfluidics
  • Nonlinear Waves
  • Computational Science
  • Composites materials design and manufacturing
  • Sustainable and recyclable-by-design polymers and composites
  • Polymer processing and characterization
  • Composites recycling
  • Hybrid manufacturing systems
  • Multiscale modeling
  • Damage mechanics
  • Structural Dynamics and Control
  • Cyber-physical Systems
  • Machine Vision
  • Real-time Hybrid Simulation
  • Damage Detection and Structural Condition Monitoring
  • Cyberinfrastructure Development
  • Vibrations and nonlinear dynamics
  • Smart material systems
  • Non-pneumatic tires
  • Optimization of mechanical systems
  • Additive manufacturing
  • Computational solid mechanics
  • Multiscale modeling of materials
  • Finite Elements
  • Dislocation dynamics
  • Reliability of electronic interconnects
  • Shock compression in solids
  • Phase transformations
  • Energetic materials
  • Wearable biomedical devices
  • 'Crack’-driven transfer printing technology
  • Scalable manufacturing technology
  • Mechanics and materials for flexible/stretchable electronics
  • Acoustic tweezers
  • Acoustofluidics
  • Acoustic metamaterials
  • Ultrasound control
  • Underwater communication
  • Ultrasound imaging
  • Multiphysics wave propagation theory
  • Noise control and energy harvesting
  • Naturally nanostructured materials
  • Energy, water, and wearable technology
  • Manufacturing
  • Sustainable manufacturing
  • Environmental life cycle assessment
  • Mechanics of multilayered systems
  • Adhesion in paints and coatings
  • Lightweighting strategies for transportation
  • Bio-inspired designs
  • Surface engineering and multifunctional materials
  • Convergent Manufacturing for Industry 5.0: hybrid manufacturing processes, heterogeneous materials, and bio-inspired designs
  • Systems integration, productization, and production
  • Heavy-duty machines: machining, lubrication, and corrosion
  • Heterogeneous and hierarchical integration (mechanical-electrical-optical and nano-micro-meso-macro)
  • Precision agricultural and food: cellular agriculture, vertical farming, micro-production, and resilience
  • Frugal engineering, social innovations, and social equity
  • Manufacturing in space
  • Transport Phenomena in Multi-Scale, Heterogeneous Materials & Systems
  • Fundamentals of Nanoscale Thermal Transport
  • Heat Transfer in Natural and Synthetic Fiber Systems
  • Thermofluids Interactions
  • Multi-Physics Metrology Design
  • Electronics Cooling and Thermal Management
  • Energy storage and conversion (batteries, fuel cells)
  • Mesoscale physics and stochastics
  • Reactive transport, materials, processing, and microstructure interactions
  • Structural Health Monitoring
  • Wave propagation
  • Structural dynamics and vibration control
  • Adaptive structures
  • Periodic structures and acoustic metamaterials
  • Energy harvesting
  • Thermoacoustics
  • Solid mechanics, multiscale and multiphysics modeling.
  • Design of engineering material systems.
  • Fracture and fatigue.
  • Microarchitectured materials.
  • Biomechanics of soft and hard tissues.
  • Multi-process/multi-material additive manufacturing
  • Nondestructive evaluation
  • Advanced acoustic materials and metamaterials
  • Ultrasonics
  • Computational and experimental solid mechanics focused on fatigue, fracture, and multi-physics phase evolution problems
  • Computational techniques including Finite Element Analysis (FEA), Isogeometric Analysis (IGA), geometric modeling, CAD and optimal design
  • Heterogeneous Integration and Advanced Electronics Packaging with a focus on thermomechanical behavior, reliability, and electrical-thermal-mechanical co-design
  • Desalination & Water Treatment
  • Water-Food-Energy Nexus
  • Thermofluids
  • Nanotechnology
  • Membrane Science
  • Heat Transfer in Advanced Semiconductor Interconnects & Packaging
  • Electronic Cooling & Efficient Thermal Packaging Materials
  • Thermal/Mechanical Simulation & Characterization
  • Materials, Processing & Architecture Development for Semiconductor Packaging
  • MEMS Fabrication for Extreme Heat Flux Microfluidic Cooling
  • Advanced Semiconductor Nanoscale 3D Interconnections
  • Novel Photonics & Quantum Packaging Technologies
  • Reliability Modeling & Characterization
  • Electronics cooling and packaging
  • Phase-change transport phenomena
  • Microscale and nanoscale surface engineering for enhanced thermal transport
  • Energy efficiency in thermal systems
  • Transport in porous materials
  • Microscale diagnostics and sensing
  • Deformation, stress, plasticity, fracture
  • Multiscale modeling, first-principles, molecular dynamics simulations, and finite element modeling
  • In-situ experiments
  • Mechanics of redox active materials - Li-ion batteries, Na-ion batteries, all-solid-state batteries
  • Mechanics of polymeric materials - organic electrochromics, superelastic organic semiconductors