2023 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Nanotechnology (25)

 

Air Purification with Photocatalysis and Acoustic Filtering 

Description:
There are two related projects, both focused on making air safe, including from bioaersols like COVID.

1) Photocatalysis for Air Purification: Photocatalysis is one method for helping degrade harmful airborne particles, like COVID-19, which our lab is investigating in a partnership with a start-up company. Undergraduates interested in designing experimental setups and microbiological experiments are well-suited for this project. Candidates with experience in culturing microorganism/relevant wet lab experience is preferred.

2) Acoustic removal of aerosols: Sound waves can interact with small particles like aerosols, and be used to manipulate their motion. In this project, we aim to invent the first system that can make air safe with sound waves.
Research categories:
Biological Characterization and Imaging, Biological Simulation and Technology, Energy and Environment, Engineering the Built Environment, Fluid Modelling and Simulation, Material Modeling and Simulation, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • No Major Restriction
Desired experience:
All applicants should have an interest in photochemistry, microbiology, aerosol sciences, and experimental research. In addition to the required skills mentioned in the points above, applicants with additional experience with some of the following programs are preferred: Python and Adobe Illustrator. What experience will you gain? • Hands on research experience and potential co-authorship in high impact journals • Application of engineering fundamentals to important societal problems • Research credit hours (and potential opportunities for financial compensation in the summer) • Networking opportunities with academic and industry leaders
School/Dept.:
Mechanical Engineering
Professor:
David Warsinger

More information: www.warsinger.com

 

Conducting Polymers for Bioelectronic Applications 

Description:
This project involves the synthesis, characterization, and device application of conducting plastics for bioelectronic applications. In conjunction with a graduate student mentor, the SURF student will focus on synthesizing new polymers and characterizing the molecular, thermal, structural, electronic, and magnetic properties of the materials. As many carbon-based polymers are electronically and magnetically inactive, this line of research examines previously unexamined materials for next-generation applications, including their inclusion as the active layer materials in biomedical sensors. Thus, the SURF student will fabricate and test electronic and magnetic devices along these lines.
Research categories:
Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • No Major Restriction
Desired experience:
Students who are earlier in their careers (i.e., just completing their first year or sophomore year of study) are preferred. An interest in polymer chemistry and electronic devices is desired.
School/Dept.:
Davidson School of Chemical Engineering
Professor:
Bryan Boudouris

More information: https://engineering.purdue.edu/ChE/people/ptProfile?resource_id=71151

 

Development of protein biomarkers from biofluids for non-invasive early detection and monitoring of cancers 

Description:
Currently, most cancer diagnosis procedures include a diagnostic imaging process, such as a CT scan followed by a tumor biopsy. Tissue biopsy is an invasive and painful procedure and may pose health risks for patients such as those with kidney diseases. Liquid biopsy, the ability to detect and monitor disease through biofluids, is highly promising and may replace tissue biopsy with an immense potential public health impact. The use of liquid biopsy offers numerous advantages in the clinical setting, including its non-invasive nature, a suitable sample source for longitudinal disease monitoring, a better screenshot of tumor heterogeneity, and lower costs compared to tissue biopsy. Increasing evidence indicates an important cellular function of exosomes and other extracellular vesicle (EV) particles in tumor biology and metastasis, presenting them as intriguing sources for biomarker discovery and disease diagnosis. However, the vast majority of current exosome/EV studies focus on their miRNAs, with few studies on functional proteins such as phosphorylated proteins. As phosphorylation is a major player in cancer and other disease progression, EV phosphoproteins are expected to become actively pursued targets for in vitro disease diagnosis. We were the first group to demonstrate that many phosphoproteins in exosomes and microvesicles could be extracted from a small volume of biofluids, identified by high-resolution mass spectrometry (MS), and verified as potential cancer markers (Chen et al PNAS 2017). In this project, we will focus on non-invasive cancer detection by coupling CT scans with liquid biopsy to eliminate the need for surgery by more than 50%. The IU Urology team led by kidney surgeon Dr. Boris and Dr. Tao’s lab at Purdue University collaborated with prior funding have established specific biosignatures found in low- and high-grade clear cell RCC. An undergraduate student may be involved in the protein sample preparation from biofluids and tissues, maintenance of equipment, and/or bioinformatics analysis.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Deep Learning, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Computer Science
  • Biochemistry
  • Biomedical Engineering
  • Chemistry
  • Biology
Desired experience:
Certain coding skills and biostatistics are highly desirable but not required.
School/Dept.:
Biochemistry AND Chemistry
Professor:
W. Andy Tao

More information: http://www.protaomics.org/

 

Energy Efficient Dryer Design and Analysis for Advanced Manufacturing 

Description:
In the coming years, countries around the world will make concerted efforts to decarbonize various industries and technologies to help prevent and reverse climate change. Currently, thermal dehydration accounts for 10-20% of all industrial energy consumption and relies heavily on the combustion of fossil fuels. Vapor compression heat pumps, like those used in building air conditioners, offer a high-efficiency, electrically driven heat source for industrial drying applications, however there are many barriers preventing broad implementation. Our team at Purdue has proposed a new thermal drying system concept that employs unique materials and exploits clever thermodynamic design to provide up to 40% energy and emissions savings. As part of this work, we are developing system models/simulations, designing and building prototype systems, and performing advanced materials research, thus providing a breadth of exciting opportunities for aspiring scientists and engineers. This research is also heavily tied to our work on energy efficient thermal systems for buildings and water/energy sustainability, and the student who joins the project will be exposed to many research topics within the Water-Energy Nexus.
Research categories:
Composite Materials and Alloys, Energy and Environment, Engineering the Built Environment, Fluid Modelling and Simulation, Material Modeling and Simulation, Material Processing and Characterization, Microelectronics, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
Applicants should have a general interest in energy and sustainability. Should also have a strong background/interest in thermodynamics, heat transfer, and/or materials science. Applicants with experience in some (not all) of the following are preferred: LabVIEW, Python (Jupyter, Google Colab, etc.) Engineering Equation Solver, MATLAB, 3D-CAD Software, prototype design/manufacturing, and Adobe Illustrator. 2nd semester Sophomores, Juniors, and 1st semester Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
Jim Braun

More information: www.warsinger.com

 

High Performance Perovskite Solar Cells 

Description:
Sunlight is the most abundant renewable energy resource available to human beings, and yet it remains one of the most poorly utilized sources of clean energy. Solar cell modules incorporating single crystalline silicon and gallium arsenide currently provide the highest efficiencies for solar energy conversion to electricity but remain limited due to their high costs.

In the past few years, perovskite solar cell technology has made significant progress, improving in efficiency to ~25%, while maintaining attractive economics due to the use of inexpensive soluble materials coupled with ultra low-cost deposition technologies. However, the real applications of these devices requires new breakthroughs in device performance, large-scale manufacturing, and improved stability. Among these, stability and degradation are among the most significant challenges for perovskite technologies. Perovskite absorber layer and organic charge transport materials can be sensitive to water, oxygen, high temperatures, ultraviolet light, and even electric field, all of which will be encountered during operation. To address these issues, significant efforts have been made, including mixed dimensionality and surface passivation; alternative absorber materials and formulations, new charge transport layers, and advanced encapsulation techniques, etc. Now, T80 lifetimes (i.e., the length of time in operation until measured output power is 80% of original output power) of over 1,000 hours have been demonstrated. However, it is still far below the industry required 20 years lifetime, indicating the ineffectiveness of current approaches. To make this advance, non-incremental and fundamentally new strategies are required to improve the intrinsic stability of perovskite active materials.

In this project, we propose a new paradigm to develop intrinsically robust perovskite active layers through the incorporation of multi-functional semiconducting conjugated ligands. In preliminary work, we have demonstrated that semiconducting ligands can spontaneously organize within the active layer to passivate defects and restrict halide diffusion, resulting in dramatic improvements in moisture and oxygen tolerance, reduced phase segregation, and increased thermal stability. Combining a team with expertise spanning the gamut of materials synthesis, computational materials design, and device engineering, we will develop a suite of multi-functional semiconducting ligands capable of improving the intrinsic stability perovskite materials while preserving and even enhancing their electronic properties. Through this strategy, we aim to achieve over 25% cell efficiency with operational stability over 20 years for future commercial use.
More information: https://letiandougroup.com/
Research categories:
Energy and Environment, Material Processing and Characterization, Nanotechnology
School/Dept.:
Chemical Engineering
Professor:
Letian Dou

More information: https://letiandougroup.com/

 

Magnetometry and noise thermometry 

Description:
Quantum computing in the present day requires large macroscopic circuits and optical lattices and controls which are very expensive. Solid-state techniques for quantum computing will allow the miniaturization and the components and cost-effective scale-up of quantum technologies. A problem of solid-state quantum technologies is noise, especially thermal noise, which scrambles the quantum information. On this theme, one lofty goal of quantum engineering is achieving topologically protected quantum states which are protected from thermal decoherence. These materials have tale-tale signatures of stable quantization, which start to appear in thermal transport and magnetometry measurements. In this project, we attempt to set up such measurements at Purdue University at low temperatures on candidate topological materials.
Common thermometry measurements cannot be performed on thin-film samples required for this project. However, thermometry based on Johnson-Nyquist noise on Pt electrodes allows measuring the same when placed proximate to a quantum material in the thin-film form. Overall the method allows the local temperature measurement, and hence quantum decoherence, on a solid-state sample. The temperature difference, if quantized, is an excellent measure for quantization. The understanding for the thermal signatures of the sample will be complemented by magnetometry, which is will be achieved by the installation of a SQUID magnetometer by the sample (made by Quantum Design). Overall, the project requires that the student become an expert in thermometry using noise as a guiding principle. The project requires the candidate to become proficient in LabView and Python coding to transduce the noise signatures from e-beam platinum deposits on silicon in milli-Kelvin temperatures, both in the absence and the presence of a solid-state sample.
Research categories:
Material Processing and Characterization, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
  • Electrical Engineering
  • Physics
  • Materials Engineering
Desired experience:
Knowledge of Fourier transformation is useful.
School/Dept.:
Physics and Astronomy
Professor:
Arnab Banerjee

More information: https://www.physics.purdue.edu/people/faculty/arnabb.php

 

Mass spectrometry of biomolecules and nanoclusters 

Description:
We are using mass spectrometry to study the localization of lipids, drugs, and proteins in biological tissues and to prepare novel functional interfaces using well-defined polyatomic ions. The student will work with a graduate student mentor to either perform nanocluster synthesis and characterization using mass spectrometry and electrochemical measurements or to develop new analytical approaches for quantitative analysis of biomolecules in biological samples. We are also developing computational approaches for connecting mass spectrometry imaging data with biochemical pathways. In both projects, the student will be trained to operate state-of-the-art mass spectrometers and perform independent data acquisition and analysis. The student will also work with scientific literature to obtain a broader understanding of the field.
Research categories:
Biological Characterization and Imaging, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • No Major Restriction
Desired experience:
general chemistry, calculus, analytical or physical chemistry
School/Dept.:
Chemistry
Professor:
Julia Laskin

More information: https://www.chem.purdue.edu/jlaskin/

 

Nanophotonic quantum optics with neutral atoms 

Description:
Quantum technologies based on neutral atoms have played important roles in quantum simulation, quantum computation and quantum networks. An outstanding challenge for the neutral atom-based quantum information technologies is the realization of an efficient optical interface that would enable long-range transmission of quantum information via photonic qubits. Interfacing neutral atoms with nanoscale photonic waveguide and resonators promises strong atom-light interactions and new applications in quantum technologies. This project explores design of nanophotonics and experimental methods to couple cold (laser-cooled) or hot neutral atoms to electromagnetic modes in a nanophotonic microring resonator. Specifically, a participating undergraduate student will assist graduate students and senior group members in modeling and characterizing nanophotonic microring circuits, designing and constructing opto-electronics for stabilization and control of the optical circuits. A student may also assist in theoretical modeling and experiments on quantum nonlinear optics based on neutral atoms coupled to a nanophotonic resonator.
Research categories:
Nanotechnology
Preferred major(s):
  • Physics
  • Electrical Engineering
Desired experience:
Basic understanding of electronic circuits, electricity and magnetism, some knowledge of quantum mechanics would be preferred.
School/Dept.:
Physics and Astronomy
Professor:
Chen-Lung Hung

More information: https://ultracold.physics.purdue.edu/

 

Nanoscale 3D printing 

Description:
The ability to create 3D structures in the micro and nanoscale is important for many applications including electronics, microfluidics, and tissue engineering. This project deals with development and testing of a setup for building 3D structures using a femtosecond pulsed laser. A method known as two photon polymerization is used to fabricate such structures in which a polymer is exposed to laser and at the point of the exposure the polymer changes its structure. Moving the laser in a predefined path results in the desired shape and the structures. The setup incorporates the steps from designing a CAD model file to slicing the model in layers to generating the motion path of the laser needed for fabricating the structure. Possible improvements to the process by the undergraduate researcher include control algorithms, better CAD models, and better manufacturing strategies.
Research categories:
Deep Learning, Fabrication and Robotics, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • Mechanical Engineering
Desired experience:
junior or senior standing, CAD, Matlab or Python, minimum GPA > 3.5
School/Dept.:
Mechanical Engineering
Professor:
Xianfan Xu

More information: https://engineering.purdue.edu/NanoLab/

 

Nanoscale Heat Transfer 

Description:
This project deals with study of heat transfer in very thin film materials using Raman Spectroscopy and Ultrafast laser systems. Heat transfer in nanoscale materials including 2D materials (very thin layered materials bonded by van der Waal’s force) shows superior characteristics for applications in numerous advanced devices. Their thermal transport behaviors are also different compared with bulk materials, and an understanding of the transport process is important for applications of these materials. We use non-contact, optical method (i.e., lasers etc.) to investigate heat flow in these materials. The undergraduate student will work with graduate students to learn to use state-of-the-art experimental facilities, carry out experiments, and analyze experimental results.
Research categories:
Energy and Environment, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Physics
Desired experience:
Thermoscience courses, interests in hands-on experiments, GPA>3.5
School/Dept.:
Mechanical Engineering
Professor:
Xianfan Xu

More information: https://engineering.purdue.edu/NanoLab/

 

Optimize flux-bias-line design for superconducting quantum circuits 

Description:
Superconducting (SC) circuit is a promising platform for realizing small quantum computers and other applications in quantum information sciences. The goal of the project is to improve the design of so-called "flux-bias-lines" on SC quantum devices that is critical for the accurate control of superconducting qubits. The student will be involved in the design, modeling, and numerical simulation of the flux-bias-lines. They will learn how to perform simulation and optimization in commercial physics simulation software (Comsol and Ansys). The improved design will make a direct impact on future devices in the lab.

This project focuses primarily on analytical design and numerical modeling. However, the student will also have a chance to participate in other experiments, working with other graduate and undergraduate researchers in the lab. These could include building microwave and radio-frequency electronics and custom hardware for the control and measurement of SC quantum devices.
Research categories:
Material Modeling and Simulation, Nanotechnology
Preferred major(s):
  • Physics
  • Electrical Engineering
  • Computer Engineering
  • Materials Engineering
Desired experience:
Freshman-level electricity and magnetism, and a basic understanding of electrical circuits are strongly recommended. Coding experience, preferably in python, will be very useful. If you love building things (whether it's hardware, software, or a mix), and love solving puzzles, there is a very high chance that you will enjoy and excel in this project.
School/Dept.:
Physics and Astronomy
Professor:
Ruichao Ma

More information: www.ma-quantumlab.com

 

Paper-based Microfluidics for Rapid Infectious Disease Diagnostics 

Description:
The goal of the project is to design low-cost and user-friendly paper-based point-of-care (POC) diagnostics tests for the detection of a panel of infectious diseases.
These student will be involved directly in the research related to the fabrication and testing of these point-of-care technologies, designed to allow for sensitive, rapid, and repeatable multiplexed detection of a variety of food and waterborne pathogens with high precision and accuracy and minimal sample handling. Target pathogens include parasites such as P. falciparum, (malaria), and Cyclospora Cayetanensis (found in agricultural water that severely lacks detection technologies), along with bacteria-induced foodborne and waterborne infectious diseases such as E. Coli O157:H7, S. Typhimurium, Listeria spp. and Campylobacter Jejuni. These will be aptamer-enabled biosensors, which will be further amenable for the rapid and low cost detection of other diseases, such as inflammation marker panels for Troponin, CRP, IL-6, and TNF-α. Aptamers are DNA molecules with high stability, high affinity for both small molecules and whole-cell pathogens, and are robust when exposed to harsh environments.

The main biorecognition element for the detection of these whole-cell pathogens, responsible for infectious diseases of interest, will be aptamers, which will allow for whole-cell pathogen detection, without amplification or cell lysis. Blood serum samples will be loaded in the sample well, and will diffuse to the four testing areas, each labeled for one individual pathogen. The initially negative testing areas will display a pink color. A positive test for one of the pathogens will be recognized by a change of color from pink to purple. A 3D printed portable imaging box, equipped with an image capture system and embedded color recognition and analysis software will allow for images of the test strips to be taken at constant illumination, on site, at primary care clinics or anywhere at the patient’s home, regardless of time of the day and natural illumination conditions. The portable imaging device will be able to display the test results on the screen. Thus, the detection limit of the diagnostic devices will be pushed down to levels beyond the ones possible with the naked eye, considering the limitation of human vision performance, especially at low illumination levels. A negative test for one pathogen will display an unchanged pink color of the corresponding testing area. We will optimize the device that has already been demonstrated in preliminary work in Stanciu’s group for food samples for E. Coli O157:H7, Listeria monocytogenesis and Salmonella typhimurium, to serum samples for the four pathogens of interests. Ultimately, the project's objective is to establish device performance (detection limit, linear range) .



Research categories:
Chemical Catalysis and Synthesis, Internet of Things (IoT), Medical Science and Technology, Nanotechnology, System-on-a-Chip
Preferred major(s):
  • No Major Restriction
Desired experience:
General chemistry or biochemistry laboratory training.
School/Dept.:
Materials Engineering
Professor:
Lia Stanciu

More information: https://lia-stanciu.squarespace.com/

 

Quantum Characterization Setup Software Development 

Description:
Our research group is in the midst of constructing new quantum optics characterization setups. These setups are used to characterize the photoluminescence properties of different quantum emitters down to the single photon level! This single emitter level property characterization is critical in the development of quantum optical computing, sensing, and communications! We are looking for an undergraduate student that can help with the development of software to control the various parts of the setup and to write the drivers to interface the hardware to the upper-level analysis software required to control the setup.
Research categories:
Big Data/Machine Learning, Deep Learning, Fabrication and Robotics, Material Processing and Characterization, Nanotechnology, Other
Preferred major(s):
  • No Major Restriction
Desired experience:
Experience with embedded systems programming, analog to digital conversion experience, driver experience, python software experience.
School/Dept.:
Electrical and Computer Engineering (ECE)
Professor:
Vladimir Shalaev
 

Quantum Characterization Setup Software Development  

Description:
This research project focuses on the development of software algorithms for automated analysis of single photon emitters in silicon nitride nanopillars. The students role will be to develop these algorithms to help produce large datasets to be used in machine learning studies and in basic process development studies of emitters generated though the annealling of SiN/SiO nanopillars.
Research categories:
Big Data/Machine Learning, Material Processing and Characterization, Nanotechnology, System-on-a-Chip
Preferred major(s):
  • No Major Restriction
Desired experience:
Strong python programming skills and algorithm development skills. Additionally, image processing skills are a plus!
School/Dept.:
Electrical and Computer Engineering (ECE)
Professor:
Alexander Kildishev
 

SCALE Heterogeneous Integration/ Advanced Packaging: 3D Cryogenic Packaging for Superconducting Computing 

Description:
This project is one of several SCALE SURF research projects. SCALE projects are restricted to students who are U.S. Citizens. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

In 2017, a large-scale, 3D integrated quantum processor was demonstrated by MIT Lincoln Laboratory using heterogeneous 3D integration to create an architecture that enables the use of the third dimension without sacrificing qubit performance [D. Rosenberg, et al., Nature 2017]. In these quantum applications, conventional Sn-based solder bumps are not reliable while Indium and bismuth-based solders are promising for 3D integration at low temperatures. In this topic, new cryogenic compatible packaging materials and cryogenic superconducting multi-chip bonding techniques are needed to further explore and investigate the microelectronics devices and packages at low/cryogenic temperatures.

Reference: Rosenberg, D., et al. "3D integrated superconducting qubits." npj quantum information 3.1 (2017): 1-5.)

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Advanced Packaging, Heterogeneous Integration, Material Processing and Characterization, Microelectronics, Nanotechnology, System-on-a-Chip
Preferred major(s):
  • Electrical Engineering
  • Materials Engineering
  • Mechanical Engineering
Desired experience:
1. Microelectronics, micro/nanotechnology courses 2. Clean room fabrication experience 3. Enthusiasm for material fabrication and characterizations 4. Familiar with SEM, TEM analysis
School/Dept.:
ME
Professor:
Tiwei Wei
 

SCALE Heterogeneous Integration/ Advanced Packaging: Glass Interposer Development for 3D Heterogenous Integration 

Description:
This project is one of several SCALE SURF research projects. SCALE projects are restricted to students who are U.S. Citizens. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

Interposer is one of the most potential solutions for future 3D integration with ultrafine pitch. Silicon interposer has been developed in both industry and academia. However, silicon interposer has limitations, such as low productivity due to limited wafer size, extra expensive semiconductor fabrication processes, and poor electrical properties like insert loss and signal crosstalk. On the contrary, glass can be one kind of promising material as an interposer because of its excellent properties, such as good electrical resistivity, relatively low CTE compared to organic material, and possible high productivity with big panel sizes provided by glass suppliers.

Recent research studies have mainly focused on three challenges in glass interposer technology: (1) formation of the fine pitch via, which is more difficult than through silicon via (TSV) due to the unfavorable etching process ; (2) via metallization and via filling process, which become much more complicated because of the rough morphology of TGV surface, and difficulty to fill the tapered via through Damascus electroplating; (3) reliability concern, which is caused by brittleness and poor mechanical strength of glass.

Through glass via fabrications
Reference: Wei, T. W., Cai J.*, et al. Performance and reliability study of TGV interposer in 3D integration[C]//2014 IEEE 16th Electronics Packaging Technology Conference (EPTC). IEEE, 2014: pp. 601-605.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Advanced Packaging, Heterogeneous Integration, Material Modeling and Simulation, Material Processing and Characterization, Microelectronics, Nanotechnology, System-on-a-Chip
Preferred major(s):
  • Electrical Engineering
  • Mechanical Engineering
  • Materials Engineering
Desired experience:
1. Microelectronics, micro/nanotechnology courses 2. Clean room fabrication experience 3. Enthusiasm for material fabrication and characterizations 4. Familiar with SEM, and TEM analysis.
School/Dept.:
ME
Professor:
Tiwei Wei

More information: https://alphalab-purdue.org/

 

SCALE Heterogeneous Integration/ Advanced Packaging: Multi-Photon 3D-printed Nano Vertical Compliant Interconnects for sub-Micron Pitch 

Description:
This project is one of several SCALE SURF research projects, and is restricted to US citizens. If you are interested in more than one SCALE SURF project, you can apply to all of them with one application. ** Be sure to address each project by name in your application. ** See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

Heterogeneous integration of different dielets (processor, memory, RF, etc.) has made rapid strides in the last decade driven by the development of three-dimensional (3D) integration, fan-out wafer-level packaging, and interposers. A key requirement of package scaling is the reduction of the I/O pitch, which requires elimination of solder and micro-solder bumps. Scaling of solder bumps below 40 µm pitch is challenging due to multiple issues, such as solder extrusion, bridging and intermetallic compound (IMC) formation. Therefore, micro and nano-Cu interconnects using Cu to Cu thermal compression bonding and hybrid bonding have been demonstrated for next generation heterogeneous integration. However, nano-Cu interconnects suffer from electromigration related failures at sub-micron pitch sizes. Here we propose Cu, Ag or cobalt composite with graphene or reduced graphene oxide for compliant and high conductivity interconnects. Graphene is a 2D array of sp2-bonded carbon atoms and is known to have extraordinary electrical and mechanical properties. The carrier mobility of graphene is 2.5 x 104 cm2V-1s-1 and the maximum current carrying capacity is up to 108 Acm-2, therefore, graphene-based materials show great potential for future interconnect technologies such as Cu-graphene or Co-graphene or Ag-graphene composites. SURF student will prepare Cu-graphene, Co-graphene, Ag-graphene composites and measure thermal conductivity using a TLM test structure. Multi-photon 3D printing will also be explored to define nanometer feature size. Future work will include effect of these composites on mechanical, thermal and electromigration properties.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Advanced Packaging, Heterogeneous Integration, Material Processing and Characterization, Microelectronics, Nanotechnology
Preferred major(s):
  • Mechanical Engineering,
  • Materials Engineering
  • Chemical Engineering
Desired experience:
MSE230 or introductory materials course. Training will be provided on SEM and other tools needed.
School/Dept.:
School of Mechanical Engineering
Professor:
Shubhra Bansal
 

SCALE Heterogeneous Integration/ Advanced Packaging: Self-alignment Technology for 3D System Integration 

Description:
This project is one of several SCALE SURF research projects. SCALE projects are restricted to students who are U.S. Citizens. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

For the typical 3D integration scheme, die-to-wafer bonding is a key technology that can enable the stacking of different chips, such as logic, memory, or power devices. Compared with wafer-to-wafer bonding, it is challenging for die-to-wafer bonding to achieve high throughput while maintaining a high alignment accuracy. Researchers have been investigating different self-alignment technologies to improve the high-precision chip alignment accuracy for die-to-wafer bonding, such as Surface tension-driven with hydrophilic chip surfaces. In this topic, we will explore innovative self-alignment methods for advanced die-to-wafer bonding, enabling high throughput heterogeneous integration.

Reference: Fukushima, Takafumi, et al. "Self-assembly technologies with high-precision chip alignment and fine-pitch microbump bonding for advanced die-to-wafer 3D integration." 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011.)

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.

Research categories:
Advanced Packaging, Composite Materials and Alloys, Fluid Modelling and Simulation, Heterogeneous Integration, Material Modeling and Simulation, Material Processing and Characterization, Microelectronics, Nanotechnology, Thermal Technology
Preferred major(s):
  • Electrical Engineering
  • Mechanical Engineering
  • Materials Engineering
Desired experience:
1. Microelectronics, micro/nanotechnology courses 2. Clean room fabrication experience 3. Enthusiasm for material fabrication and characterizations 4. Familiar with SEM, TEM analysis 5. Fluid mechanics Academic Years Eligible: Rising juniors and seniors with the desired experience will be preferred, but rising sophomores are also eligible to apply.
School/Dept.:
ME
Professor:
Tiwei Wei

More information: https://alphalab-purdue.org/

 

SCALE Radiation Hardening: Modeling radiation effects on semiconductor diodes 

Description:
This project is one of several SCALE SURF research projects. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023. Please note that US citizenship is required to receive a SURF fellowship for this specific project.

One of the important limits for device operation is the space-charge limit, which corresponds to the maximum allowed current before no more electrons cannot be emitted into a diode. This limit is given by the Mott-Gurney law in a trap-free solid or the Mark-Helfrich law for a solid with traps distributed exponentially in energy. Because ionizing radiation will create electrons and ions in a semiconductor device, this project will involve elucidating the effect of these charges on these limits. This may include using simulations to characterize behavior or adapting analytic theories to include ionizing radiation effects.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Material Modeling and Simulation, Microelectronics, Nanotechnology, Radiation Hardening
Preferred major(s):
  • Nuclear Engineering
  • Electrical Engineering
  • Materials Engineering
  • Computer Engineering
Desired experience:
1. Experience with programming in Python, C/C++, and/or MATLAB. 2. Enthusiasm for scientific programming. Understanding of radiation transport and electromagnetism.
School/Dept.:
Nuclear Engineering
Professor:
Allen Garner

More information: https://research.purdue.edu/scale

 

SCALE System-on-Chip: SoC design, verification, programming, and test 

Description:
This project is one of several SCALE SURF research projects. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

System on Chip Extension Technologies (SoCET) is a long running chip design team intended primarily for undergraduates to get experience in as many aspects of chip design, fabrication, and test as possible. The team is organized like a small chip design company with sub-teams for logic design, verification, chip-layout, analog design, printed circuit board (PCB) design, test, software, and special research projects in collaboration with research groups in ECE. Special projects include applications in hardware security and GPU design. Based on your interests and background, team leaders will work with you to assign you to an appropriate sub-team or special project. Because of the wide range of projects, the experience and skill requirements for SoCET are flexible. Almost any kind of background in circuit design, logic design, circuit simulation, computer architecture, and microcontroller programming will be useful in some part of the team. For more details on possible projects and sub-teams, see https://engineering.purdue.edu/SoC-Team.

In your application, please specify which of the SCALE technical areas you are most interested in. The
technical areas are:
• Radiation Hardening
• System-on-Chip (indicate this if you are interested in SoCET)
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation

Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects. For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Computer Architecture, Microelectronics, Nanotechnology, System-on-a-Chip, Other
Preferred major(s):
  • Electrical Engineering
  • Electrical Engineering Technology
  • Computer Engineering
  • Computer Engineering Technology
  • Computer Science
Desired experience:
Almost any kind of background in circuit design, logic design, circuit simulation, computer architecture, and microcontroller programming will be useful on some part of this project.
School/Dept.:
Electrical and Computer Engineering
Professor:
Mark Johnson
 

SCALE: Optimizing MXene properties 

Description:
This project is one of several SCALE SURF research projects, and is restricted to US citizens. If you are interested in more than one SCALE SURF project, you can apply to all of them with one application. ** Be sure to address each project by name in your application. ** See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

Most of the materials we encounter in our daily lives are ‘bulk’ materials – they contain an enormous number of atoms in all three dimensions. However, if we instead consider materials with one dimension of only a few atoms in thickness, like graphene, we can achieve many unique physical and chemical properties unique from their bulk counterparts. For example, 2D magnetic materials have drawn significant attention because of their application in spintronics and quantum computing. One class of 2D materials with the potential to serve as the first room-temperature 2D magnets are MXenes, near atomically thin transition metal carbides or nitrides. For a magnetic material, the configuration can be ferromagnetic (FM) or antiferromagnetic (AFM) depending on the direction of spins of electrons. Using electronic structure calculations based on density functional theory (DFT), we can identify the magnetic configuration with lower energy. Further, the critical temperature, e.g. Curie temperature, is the temperature above which the material loses the spontaneous magnetization. For real-world applications, magnetic materials with a critical temperature that is higher than room temperature are desired. This project will combine DFT calculations to discover magnetic MXenes with high Curie temperatures.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Big Data/Machine Learning, Deep Learning, Material Modeling and Simulation, Microelectronics, Nanotechnology
Preferred major(s):
  • No Major Restriction
Desired experience:
Introductory materials science or physics/chemistry of materials. Introductory programming
School/Dept.:
MSE
Professor:
Alejandro Strachan

More information: https://www.strachanlab.org

 

SCALE: Strain effect on properties of 2D MXene materials 

Description:
This project is one of several SCALE SURF research projects, and is restricted to US citizens. If you are interested in more than one SCALE SURF project, you can apply to all of them with one application. ** Be sure to address each project by name in your application. ** See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

2D materials are a class of crystalline solids with a single layer only a few atoms thick. Because of their ultrathin body, 2D materials possess unique physical and chemical properties that are usually not seen in their bulk counterparts. Nowadays, 2D materials have been widely applied in solar cells, memory devices, chemical sensors. One emerging subset of the 2D materials class is MXenes, a new type of 2D material that has been successfully synthesized and studied in the last decade. MXenes are defined by a transition metal carbide or nitride with only atomically thin layers. The properties of a specific MXene are not always suitable for a given application, and one way to tune their properties is to apply strain. The mechanical strain has effects on the electronic and magnetic properties of materials because the strain changes the crystal structure of the materials. For example, the band gap of a material is an important property for electronic applications, and studies have shown that for some 2D materials, biaxial tensile strain decreases the band gap. Different strains, including biaxial, uniaxial, tensile, and compressive, also each have a different effect on the properties. In this project, the strain-tuned electronic and magnetic properties of novel MXenes will be studied. The physical mechanism behind the strain-induced properties will be characterized based on the change of crystal structures.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Big Data/Machine Learning, Material Modeling and Simulation, Microelectronics, Nanotechnology
Preferred major(s):
Desired experience:
Introductory materials science or materials physics/chemistry Introductory programing
School/Dept.:
MSE
Professor:
Alejandro Strachan

More information: https://www.strachanlab.org

 

Scalable nanocarrier formulations to improve the bioavailability and efficacy of a potent prostate cancer drug 

Description:
There is a critical need for therapies to reduce tumor burden and promote bone repair in patients suffering from bone-metastatic prostate cancer, which affects thousands of IN residents each year. This project focuses on the development and evaluation of a novel nanoparticle formulation of cabozantinib (Cabo), a potent kinase inhibitor chemotherapeutic drug. Cabo is a poorly water-soluble small molecule drug that cannot be dosed intravenously and exhibits low bioavailability when administered orally.
We hypothesize that formulating Cabo into a fast-dissolving organic nanoparticle will improve its dissolution kinetics and oral bioavailability. This in turn is expected to translate to higher efficacy against bone-metastatic prostate tumors in vivo. To test this, the student will design Cabo nanoparticle formulations using the Ristroph lab’s scalable Flash NanoPrecipitation technology and demonstrate improved dissolution kinetics in vitro compared to crystalline drug. This will be the focus of the SURF project. If successful, we will then evaluate the efficacy of the best-performing Cabo nanoformulation in vivo in Prof. Marxa Figueiredo's lab, which has expertise with Cabo and has developed a bone metastatic model of prostate cancer.

Ingrid will prepare nanoparticles containing Cabo using Flash NanoPrecipitation, following standard methods. She will assess nanoparticle formulations in vitro for diameter and polydispersity, surface charge, stability over time, and Cabo dissolution rate using dynamic light scattering and HPLC. Milestones and expected outcomes include (1) the development a nanoparticle formulation with >95% Cabo encapsulation efficiency, >50% drug loading, and stability for >1 week (ETM: 5 weeks); (2) the demonstration of >80% Cabo dissolution within 3h in simulated intestinal fluid (ETM: 5 weeks); and (3) the preparation of sufficient material to support the efficacy study in mice (out of scope for the SURF project; I plan to hire Ingrid as an undergraduate researcher in the fall to continue this project).
Research categories:
Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Chemical Engineering
  • Biomedical Engineering
  • Biological Engineering - multiple concentrations
  • Biomedical Engineering
  • Pharmacy
School/Dept.:
ABE
Professor:
Kurt Ristroph

More information: https://www.ristrophlab.com/

 

Solution-phase chemistry to synthesize chalcogenide perovskites for photovoltaics applications 

Description:
Chalcogenide Perovskites are an exciting class of semiconducting materials that may be useful in a variety of applications, including solar energy harvesting. These materials take an ABX3 composition where A is an alkaline earth metal (Ca, Sr, Ba), B is an early transition metal (Zr, Hf), and X is a chalcogen (S, Se). While preliminary work has shown that these materials have many interesting properties, the synthesis of these chalcogenide perovskites has proven to be very difficult, often requiring excessively high temperatures around 1000 C. Our group has recently made progress in developing lower-temperature methods (below 600 C) to make BaZrS3 and BaHfS3 using soluble molecules that contain bonds between the desired metal and chalcogen. However, this chemistry is relatively unexplored, and tuning the soluble molecules may enable other chalcogenide perovskites and related materials to be synthesized.
In this project, we will investigate the synthesis of new metal-chalcogen bonded molecules and investigate how changes in the structure of the molecules affect their solubility and decomposition. The student on this project will develop skills in chemical handling and synthesis, thin film fabrication, materials characterization, and laboratory safety. Specifically, they will get to work in gloveboxes and utilize techniques such as X-ray diffraction, Raman spectroscopy, and X-Ray fluorescence. Additionally, the student will learn how solution-based chemistry can be applied to the fabrication of solar cells and other semiconductor devices.
Research categories:
Energy and Environment, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • Chemical Engineering
  • Chemistry
  • Materials Engineering
Desired experience:
General chemistry with lab
School/Dept.:
Chemical Engineering
Professor:
Rakesh Agrawal

More information: https://engineering.purdue.edu/RARG/

 

Super-Resolution Optical Imaging with Single Photon Counting and Optomechanics with Nanostructured Membranes 

Description:
Two projects are available. One involves the investigation of enhancing optical imaging resolution using single photon counting techniques. Conventional optical imaging has a hard limit on its spatial resolution, to about one half of the wavelength, and many situations can benefit from higher resolution. In addition, it is challenging to image through scattering media. By way of example, being able to sense with light deeper in the brain would be of enormous benefit in neuroscience. The statistics of photons emitted by or transmitted through an object contain valuable information about the object which could be used to enhance image resolution and possibly see through substantial background scatter. Experiments will be conducted using laser light and with a set of single photon avalanche detectors (SPADs) to measure photon correlations in time, over wavevector (direction), and between detectors in various imaging configurations. Results from these experiments will be used to assess the effectiveness of various techniques for enhancing spatial resolution in imaging applications. This work has a diverse set of potential applications including biological imaging, sensing defects in semiconductors, and imaging through fog. The other project relates to experimental work and the modeling of optical forces on structured membranes induced by a laser. The mechanical motion of a thin membrane deflected by laser light will be used to determine the membrane properties from experimental and simulated data. This will allow extraction of the mechanical material properties and more generally the validation of a theory for optomechanics that can then be used in design. The nascent field of optomechanics offers enormous impact scope, including remote actuation and propulsion, of importance in fields as diverse and molecular biology, communication, and transport. This project relates to attaining the underpinnings to move along such paths in engineering, as well as the basic physics of optical forces in material at small length scales.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Biological Simulation and Technology, Composite Materials and Alloys, Deep Learning, Material Processing and Characterization, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Electrical Engineering
  • Mechanical Engineering
  • Physics
  • Biomedical Engineering
Desired experience:
Students with an interest in experimental or modeling work and some background in electromagnetics would be a good fit for this project. The undergraduate student will work with graduate students to perform experiments in an optics laboratory, modeling, data analysis using MATLAB or python, and review relevant literature.
School/Dept.:
Electrical Engineering
Professor:
Kevin Webb