2023 Research Projects
Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.
This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.
You can browse all the projects on the list or view only projects in the following categories:
Nanotechnology (25)
Air Purification with Photocatalysis and Acoustic Filtering
1) Photocatalysis for Air Purification: Photocatalysis is one method for helping degrade harmful airborne particles, like COVID-19, which our lab is investigating in a partnership with a start-up company. Undergraduates interested in designing experimental setups and microbiological experiments are well-suited for this project. Candidates with experience in culturing microorganism/relevant wet lab experience is preferred.
2) Acoustic removal of aerosols: Sound waves can interact with small particles like aerosols, and be used to manipulate their motion. In this project, we aim to invent the first system that can make air safe with sound waves.
- No Major Restriction
More information: www.warsinger.com
Conducting Polymers for Bioelectronic Applications
- No Major Restriction
More information: https://engineering.purdue.edu/ChE/people/ptProfile?resource_id=71151
Development of protein biomarkers from biofluids for non-invasive early detection and monitoring of cancers
- Computer Science
- Biochemistry
- Biomedical Engineering
- Chemistry
- Biology
More information: http://www.protaomics.org/
Energy Efficient Dryer Design and Analysis for Advanced Manufacturing
- No Major Restriction
More information: www.warsinger.com
High Performance Perovskite Solar Cells
In the past few years, perovskite solar cell technology has made significant progress, improving in efficiency to ~25%, while maintaining attractive economics due to the use of inexpensive soluble materials coupled with ultra low-cost deposition technologies. However, the real applications of these devices requires new breakthroughs in device performance, large-scale manufacturing, and improved stability. Among these, stability and degradation are among the most significant challenges for perovskite technologies. Perovskite absorber layer and organic charge transport materials can be sensitive to water, oxygen, high temperatures, ultraviolet light, and even electric field, all of which will be encountered during operation. To address these issues, significant efforts have been made, including mixed dimensionality and surface passivation; alternative absorber materials and formulations, new charge transport layers, and advanced encapsulation techniques, etc. Now, T80 lifetimes (i.e., the length of time in operation until measured output power is 80% of original output power) of over 1,000 hours have been demonstrated. However, it is still far below the industry required 20 years lifetime, indicating the ineffectiveness of current approaches. To make this advance, non-incremental and fundamentally new strategies are required to improve the intrinsic stability of perovskite active materials.
In this project, we propose a new paradigm to develop intrinsically robust perovskite active layers through the incorporation of multi-functional semiconducting conjugated ligands. In preliminary work, we have demonstrated that semiconducting ligands can spontaneously organize within the active layer to passivate defects and restrict halide diffusion, resulting in dramatic improvements in moisture and oxygen tolerance, reduced phase segregation, and increased thermal stability. Combining a team with expertise spanning the gamut of materials synthesis, computational materials design, and device engineering, we will develop a suite of multi-functional semiconducting ligands capable of improving the intrinsic stability perovskite materials while preserving and even enhancing their electronic properties. Through this strategy, we aim to achieve over 25% cell efficiency with operational stability over 20 years for future commercial use.
More information: https://letiandougroup.com/
More information: https://letiandougroup.com/
Magnetometry and noise thermometry
Common thermometry measurements cannot be performed on thin-film samples required for this project. However, thermometry based on Johnson-Nyquist noise on Pt electrodes allows measuring the same when placed proximate to a quantum material in the thin-film form. Overall the method allows the local temperature measurement, and hence quantum decoherence, on a solid-state sample. The temperature difference, if quantized, is an excellent measure for quantization. The understanding for the thermal signatures of the sample will be complemented by magnetometry, which is will be achieved by the installation of a SQUID magnetometer by the sample (made by Quantum Design). Overall, the project requires that the student become an expert in thermometry using noise as a guiding principle. The project requires the candidate to become proficient in LabView and Python coding to transduce the noise signatures from e-beam platinum deposits on silicon in milli-Kelvin temperatures, both in the absence and the presence of a solid-state sample.
- No Major Restriction
- Electrical Engineering
- Physics
- Materials Engineering
More information: https://www.physics.purdue.edu/people/faculty/arnabb.php
Mass spectrometry of biomolecules and nanoclusters
- No Major Restriction
More information: https://www.chem.purdue.edu/jlaskin/
Nanophotonic quantum optics with neutral atoms
- Physics
- Electrical Engineering
More information: https://ultracold.physics.purdue.edu/
Nanoscale 3D printing
- Mechanical Engineering
More information: https://engineering.purdue.edu/NanoLab/
Nanoscale Heat Transfer
- Mechanical Engineering
- Physics
More information: https://engineering.purdue.edu/NanoLab/
Optimize flux-bias-line design for superconducting quantum circuits
This project focuses primarily on analytical design and numerical modeling. However, the student will also have a chance to participate in other experiments, working with other graduate and undergraduate researchers in the lab. These could include building microwave and radio-frequency electronics and custom hardware for the control and measurement of SC quantum devices.
- Physics
- Electrical Engineering
- Computer Engineering
- Materials Engineering
More information: www.ma-quantumlab.com
Paper-based Microfluidics for Rapid Infectious Disease Diagnostics
These student will be involved directly in the research related to the fabrication and testing of these point-of-care technologies, designed to allow for sensitive, rapid, and repeatable multiplexed detection of a variety of food and waterborne pathogens with high precision and accuracy and minimal sample handling. Target pathogens include parasites such as P. falciparum, (malaria), and Cyclospora Cayetanensis (found in agricultural water that severely lacks detection technologies), along with bacteria-induced foodborne and waterborne infectious diseases such as E. Coli O157:H7, S. Typhimurium, Listeria spp. and Campylobacter Jejuni. These will be aptamer-enabled biosensors, which will be further amenable for the rapid and low cost detection of other diseases, such as inflammation marker panels for Troponin, CRP, IL-6, and TNF-α. Aptamers are DNA molecules with high stability, high affinity for both small molecules and whole-cell pathogens, and are robust when exposed to harsh environments.
The main biorecognition element for the detection of these whole-cell pathogens, responsible for infectious diseases of interest, will be aptamers, which will allow for whole-cell pathogen detection, without amplification or cell lysis. Blood serum samples will be loaded in the sample well, and will diffuse to the four testing areas, each labeled for one individual pathogen. The initially negative testing areas will display a pink color. A positive test for one of the pathogens will be recognized by a change of color from pink to purple. A 3D printed portable imaging box, equipped with an image capture system and embedded color recognition and analysis software will allow for images of the test strips to be taken at constant illumination, on site, at primary care clinics or anywhere at the patient’s home, regardless of time of the day and natural illumination conditions. The portable imaging device will be able to display the test results on the screen. Thus, the detection limit of the diagnostic devices will be pushed down to levels beyond the ones possible with the naked eye, considering the limitation of human vision performance, especially at low illumination levels. A negative test for one pathogen will display an unchanged pink color of the corresponding testing area. We will optimize the device that has already been demonstrated in preliminary work in Stanciu’s group for food samples for E. Coli O157:H7, Listeria monocytogenesis and Salmonella typhimurium, to serum samples for the four pathogens of interests. Ultimately, the project's objective is to establish device performance (detection limit, linear range) .
- No Major Restriction
More information: https://lia-stanciu.squarespace.com/
Quantum Characterization Setup Software Development
- No Major Restriction
Quantum Characterization Setup Software Development
- No Major Restriction
SCALE Heterogeneous Integration/ Advanced Packaging: 3D Cryogenic Packaging for Superconducting Computing
In 2017, a large-scale, 3D integrated quantum processor was demonstrated by MIT Lincoln Laboratory using heterogeneous 3D integration to create an architecture that enables the use of the third dimension without sacrificing qubit performance [D. Rosenberg, et al., Nature 2017]. In these quantum applications, conventional Sn-based solder bumps are not reliable while Indium and bismuth-based solders are promising for 3D integration at low temperatures. In this topic, new cryogenic compatible packaging materials and cryogenic superconducting multi-chip bonding techniques are needed to further explore and investigate the microelectronics devices and packages at low/cryogenic temperatures.
Reference: Rosenberg, D., et al. "3D integrated superconducting qubits." npj quantum information 3.1 (2017): 1-5.)
In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.
For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
- Electrical Engineering
- Materials Engineering
- Mechanical Engineering
SCALE Heterogeneous Integration/ Advanced Packaging: Glass Interposer Development for 3D Heterogenous Integration
Interposer is one of the most potential solutions for future 3D integration with ultrafine pitch. Silicon interposer has been developed in both industry and academia. However, silicon interposer has limitations, such as low productivity due to limited wafer size, extra expensive semiconductor fabrication processes, and poor electrical properties like insert loss and signal crosstalk. On the contrary, glass can be one kind of promising material as an interposer because of its excellent properties, such as good electrical resistivity, relatively low CTE compared to organic material, and possible high productivity with big panel sizes provided by glass suppliers.
Recent research studies have mainly focused on three challenges in glass interposer technology: (1) formation of the fine pitch via, which is more difficult than through silicon via (TSV) due to the unfavorable etching process ; (2) via metallization and via filling process, which become much more complicated because of the rough morphology of TGV surface, and difficulty to fill the tapered via through Damascus electroplating; (3) reliability concern, which is caused by brittleness and poor mechanical strength of glass.
Through glass via fabrications
Reference: Wei, T. W., Cai J.*, et al. Performance and reliability study of TGV interposer in 3D integration[C]//2014 IEEE 16th Electronics Packaging Technology Conference (EPTC). IEEE, 2014: pp. 601-605.
In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.
For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
- Electrical Engineering
- Mechanical Engineering
- Materials Engineering
More information: https://alphalab-purdue.org/
SCALE Heterogeneous Integration/ Advanced Packaging: Multi-Photon 3D-printed Nano Vertical Compliant Interconnects for sub-Micron Pitch
Heterogeneous integration of different dielets (processor, memory, RF, etc.) has made rapid strides in the last decade driven by the development of three-dimensional (3D) integration, fan-out wafer-level packaging, and interposers. A key requirement of package scaling is the reduction of the I/O pitch, which requires elimination of solder and micro-solder bumps. Scaling of solder bumps below 40 µm pitch is challenging due to multiple issues, such as solder extrusion, bridging and intermetallic compound (IMC) formation. Therefore, micro and nano-Cu interconnects using Cu to Cu thermal compression bonding and hybrid bonding have been demonstrated for next generation heterogeneous integration. However, nano-Cu interconnects suffer from electromigration related failures at sub-micron pitch sizes. Here we propose Cu, Ag or cobalt composite with graphene or reduced graphene oxide for compliant and high conductivity interconnects. Graphene is a 2D array of sp2-bonded carbon atoms and is known to have extraordinary electrical and mechanical properties. The carrier mobility of graphene is 2.5 x 104 cm2V-1s-1 and the maximum current carrying capacity is up to 108 Acm-2, therefore, graphene-based materials show great potential for future interconnect technologies such as Cu-graphene or Co-graphene or Ag-graphene composites. SURF student will prepare Cu-graphene, Co-graphene, Ag-graphene composites and measure thermal conductivity using a TLM test structure. Multi-photon 3D printing will also be explored to define nanometer feature size. Future work will include effect of these composites on mechanical, thermal and electromigration properties.
In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.
For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
- Mechanical Engineering,
- Materials Engineering
- Chemical Engineering
SCALE Heterogeneous Integration/ Advanced Packaging: Self-alignment Technology for 3D System Integration
For the typical 3D integration scheme, die-to-wafer bonding is a key technology that can enable the stacking of different chips, such as logic, memory, or power devices. Compared with wafer-to-wafer bonding, it is challenging for die-to-wafer bonding to achieve high throughput while maintaining a high alignment accuracy. Researchers have been investigating different self-alignment technologies to improve the high-precision chip alignment accuracy for die-to-wafer bonding, such as Surface tension-driven with hydrophilic chip surfaces. In this topic, we will explore innovative self-alignment methods for advanced die-to-wafer bonding, enabling high throughput heterogeneous integration.
Reference: Fukushima, Takafumi, et al. "Self-assembly technologies with high-precision chip alignment and fine-pitch microbump bonding for advanced die-to-wafer 3D integration." 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011.)
In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.
For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
- Electrical Engineering
- Mechanical Engineering
- Materials Engineering
More information: https://alphalab-purdue.org/
SCALE Radiation Hardening: Modeling radiation effects on semiconductor diodes
One of the important limits for device operation is the space-charge limit, which corresponds to the maximum allowed current before no more electrons cannot be emitted into a diode. This limit is given by the Mott-Gurney law in a trap-free solid or the Mark-Helfrich law for a solid with traps distributed exponentially in energy. Because ionizing radiation will create electrons and ions in a semiconductor device, this project will involve elucidating the effect of these charges on these limits. This may include using simulations to characterize behavior or adapting analytic theories to include ionizing radiation effects.
In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.
For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
- Nuclear Engineering
- Electrical Engineering
- Materials Engineering
- Computer Engineering
More information: https://research.purdue.edu/scale
SCALE System-on-Chip: SoC design, verification, programming, and test
System on Chip Extension Technologies (SoCET) is a long running chip design team intended primarily for undergraduates to get experience in as many aspects of chip design, fabrication, and test as possible. The team is organized like a small chip design company with sub-teams for logic design, verification, chip-layout, analog design, printed circuit board (PCB) design, test, software, and special research projects in collaboration with research groups in ECE. Special projects include applications in hardware security and GPU design. Based on your interests and background, team leaders will work with you to assign you to an appropriate sub-team or special project. Because of the wide range of projects, the experience and skill requirements for SoCET are flexible. Almost any kind of background in circuit design, logic design, circuit simulation, computer architecture, and microcontroller programming will be useful in some part of the team. For more details on possible projects and sub-teams, see https://engineering.purdue.edu/SoC-Team.
In your application, please specify which of the SCALE technical areas you are most interested in. The
technical areas are:
• Radiation Hardening
• System-on-Chip (indicate this if you are interested in SoCET)
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects. For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
- Electrical Engineering
- Electrical Engineering Technology
- Computer Engineering
- Computer Engineering Technology
- Computer Science
SCALE: Optimizing MXene properties
Most of the materials we encounter in our daily lives are ‘bulk’ materials – they contain an enormous number of atoms in all three dimensions. However, if we instead consider materials with one dimension of only a few atoms in thickness, like graphene, we can achieve many unique physical and chemical properties unique from their bulk counterparts. For example, 2D magnetic materials have drawn significant attention because of their application in spintronics and quantum computing. One class of 2D materials with the potential to serve as the first room-temperature 2D magnets are MXenes, near atomically thin transition metal carbides or nitrides. For a magnetic material, the configuration can be ferromagnetic (FM) or antiferromagnetic (AFM) depending on the direction of spins of electrons. Using electronic structure calculations based on density functional theory (DFT), we can identify the magnetic configuration with lower energy. Further, the critical temperature, e.g. Curie temperature, is the temperature above which the material loses the spontaneous magnetization. For real-world applications, magnetic materials with a critical temperature that is higher than room temperature are desired. This project will combine DFT calculations to discover magnetic MXenes with high Curie temperatures.
In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.
For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
- No Major Restriction
More information: https://www.strachanlab.org
SCALE: Strain effect on properties of 2D MXene materials
2D materials are a class of crystalline solids with a single layer only a few atoms thick. Because of their ultrathin body, 2D materials possess unique physical and chemical properties that are usually not seen in their bulk counterparts. Nowadays, 2D materials have been widely applied in solar cells, memory devices, chemical sensors. One emerging subset of the 2D materials class is MXenes, a new type of 2D material that has been successfully synthesized and studied in the last decade. MXenes are defined by a transition metal carbide or nitride with only atomically thin layers. The properties of a specific MXene are not always suitable for a given application, and one way to tune their properties is to apply strain. The mechanical strain has effects on the electronic and magnetic properties of materials because the strain changes the crystal structure of the materials. For example, the band gap of a material is an important property for electronic applications, and studies have shown that for some 2D materials, biaxial tensile strain decreases the band gap. Different strains, including biaxial, uniaxial, tensile, and compressive, also each have a different effect on the properties. In this project, the strain-tuned electronic and magnetic properties of novel MXenes will be studied. The physical mechanism behind the strain-induced properties will be characterized based on the change of crystal structures.
In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.
For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
More information: https://www.strachanlab.org
Scalable nanocarrier formulations to improve the bioavailability and efficacy of a potent prostate cancer drug
We hypothesize that formulating Cabo into a fast-dissolving organic nanoparticle will improve its dissolution kinetics and oral bioavailability. This in turn is expected to translate to higher efficacy against bone-metastatic prostate tumors in vivo. To test this, the student will design Cabo nanoparticle formulations using the Ristroph lab’s scalable Flash NanoPrecipitation technology and demonstrate improved dissolution kinetics in vitro compared to crystalline drug. This will be the focus of the SURF project. If successful, we will then evaluate the efficacy of the best-performing Cabo nanoformulation in vivo in Prof. Marxa Figueiredo's lab, which has expertise with Cabo and has developed a bone metastatic model of prostate cancer.
Ingrid will prepare nanoparticles containing Cabo using Flash NanoPrecipitation, following standard methods. She will assess nanoparticle formulations in vitro for diameter and polydispersity, surface charge, stability over time, and Cabo dissolution rate using dynamic light scattering and HPLC. Milestones and expected outcomes include (1) the development a nanoparticle formulation with >95% Cabo encapsulation efficiency, >50% drug loading, and stability for >1 week (ETM: 5 weeks); (2) the demonstration of >80% Cabo dissolution within 3h in simulated intestinal fluid (ETM: 5 weeks); and (3) the preparation of sufficient material to support the efficacy study in mice (out of scope for the SURF project; I plan to hire Ingrid as an undergraduate researcher in the fall to continue this project).
- Chemical Engineering
- Biomedical Engineering
- Biological Engineering - multiple concentrations
- Biomedical Engineering
- Pharmacy
More information: https://www.ristrophlab.com/
Solution-phase chemistry to synthesize chalcogenide perovskites for photovoltaics applications
In this project, we will investigate the synthesis of new metal-chalcogen bonded molecules and investigate how changes in the structure of the molecules affect their solubility and decomposition. The student on this project will develop skills in chemical handling and synthesis, thin film fabrication, materials characterization, and laboratory safety. Specifically, they will get to work in gloveboxes and utilize techniques such as X-ray diffraction, Raman spectroscopy, and X-Ray fluorescence. Additionally, the student will learn how solution-based chemistry can be applied to the fabrication of solar cells and other semiconductor devices.
- Chemical Engineering
- Chemistry
- Materials Engineering
More information: https://engineering.purdue.edu/RARG/
Super-Resolution Optical Imaging with Single Photon Counting and Optomechanics with Nanostructured Membranes
- Electrical Engineering
- Mechanical Engineering
- Physics
- Biomedical Engineering