2023 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Composite Materials and Alloys (9)

 

Adhesives at the Beach 

Description:
The oceans are home to a diverse collection of animals producing intriguing materials. Mussels, barnacles, oysters, starfish, and kelp are examples of the organisms generating adhesive matrices for affixing themselves to the sea floor. Our laboratory is characterizing these biological materials, designing synthetic polymer mimics, and developing applications. Synthetic mimics of these bioadhesives begin with the chemistry learned from characterization studies and incorporate the findings into bulk polymers. For example, we are mimicking the cross-linking of DOPA-containing adhesive proteins by placing monomers with pendant catechols into various polymer backbones. Adhesion strengths of these new polymers can rival that of the cyanoacrylate “super glues.” Underwater bonding is also appreciable. Future efforts are planned in two different areas: A) Using biobased and biomimetic adhesives as the basis for making new plastic materials, such as systems like carbon fiber reinforced polymers, but with all components sourced sustainably. B) Developing new adhesive systems that function completely underwater.
Research categories:
Biological Characterization and Imaging, Composite Materials and Alloys, Material Processing and Characterization, Medical Science and Technology
Preferred major(s):
  • No Major Restriction
School/Dept.:
Chemistry
Professor:
Jonathan Wilker
 

Energy Efficient Dryer Design and Analysis for Advanced Manufacturing 

Description:
In the coming years, countries around the world will make concerted efforts to decarbonize various industries and technologies to help prevent and reverse climate change. Currently, thermal dehydration accounts for 10-20% of all industrial energy consumption and relies heavily on the combustion of fossil fuels. Vapor compression heat pumps, like those used in building air conditioners, offer a high-efficiency, electrically driven heat source for industrial drying applications, however there are many barriers preventing broad implementation. Our team at Purdue has proposed a new thermal drying system concept that employs unique materials and exploits clever thermodynamic design to provide up to 40% energy and emissions savings. As part of this work, we are developing system models/simulations, designing and building prototype systems, and performing advanced materials research, thus providing a breadth of exciting opportunities for aspiring scientists and engineers. This research is also heavily tied to our work on energy efficient thermal systems for buildings and water/energy sustainability, and the student who joins the project will be exposed to many research topics within the Water-Energy Nexus.
Research categories:
Composite Materials and Alloys, Energy and Environment, Engineering the Built Environment, Fluid Modelling and Simulation, Material Modeling and Simulation, Material Processing and Characterization, Microelectronics, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
Applicants should have a general interest in energy and sustainability. Should also have a strong background/interest in thermodynamics, heat transfer, and/or materials science. Applicants with experience in some (not all) of the following are preferred: LabVIEW, Python (Jupyter, Google Colab, etc.) Engineering Equation Solver, MATLAB, 3D-CAD Software, prototype design/manufacturing, and Adobe Illustrator. 2nd semester Sophomores, Juniors, and 1st semester Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
Jim Braun

More information: www.warsinger.com

 

Fabrication and simulation of the efficient joining of dissimilar materials  

Description:
The student will start with the metallographic preparation training and make many samples for the experiments. The student will then fabricate the samples using the patented equipment in the lab. The student will work with graduate students on material characterization. The student will also develop the finite element model to simulate the thermal and stress fields. Except the experiments and simulations, the student is expected to read literatures, make a presentation in the weekly meeting, write progress reports.
Research categories:
Composite Materials and Alloys, Material Modeling and Simulation, Material Processing and Characterization, Thermal Technology, Other
Preferred major(s):
  • No Major Restriction
School/Dept.:
Nuclear Engineering
Professor:
Yi Xie

More information: https://engineering.purdue.edu/MINE

 

Fabrication and testing of advanced materials in harsh environments 

Description:
The environmental degradation of structrual and functional materials is a key problem for the sustainability and longevity of advanced energy systems. The project is to investigate the properties and behaviors of innovative materials in the application environments. The student will start with the powder processing and metallographic preparation training and fabricate many samples for the corrosion experiments and thermal measurements. The student will work with graduate students on material characterization and data analysis. The student is expected to read literatures, make presentations in the weekly meeting, and write progress reports.
Research categories:
Composite Materials and Alloys, Material Processing and Characterization
Preferred major(s):
  • No Major Restriction
School/Dept.:
Nuclear Engineering
Professor:
Yi Xie

More information: https://engineering.purdue.edu/MINE

 

High Performance Concrete from Hydrogel-Based Superabsorbent Materials 

Description:
Concrete that is internally cured by water-swollen superabsorbent polymer (SAP) particles has improved strength and durability. This project will investigate new SAP formulations that have increased absorption capacity in a wider variety of low-carbon concrete materials. The student will conduct swelling tests and optical microscopy of the SAP particles and then perform optical microscopy and mechanical measurements of the SAP-cured concrete. Improvements in concrete strength and durability is a step towards reducing the carbon footprint of our civil infrastructure materials, as production of new cement results in 7-9% of the global CO2 emissions each year.
Research categories:
Composite Materials and Alloys, Material Processing and Characterization
Preferred major(s):
  • No Major Restriction
Desired experience:
Enthusiasm for chemistry and an interest in materials research. Prior experiences with cement and concrete would be a benefit to the project but are not required.
School/Dept.:
Materials Engineering
Professor:
Kendra Erk

More information: https://soft-material-mechanics.squarespace.com/home/

 

Plastics, Water, and Air: Chemical Emissions and Leaching 

Description:
Water infrastructure is critical to the safety and economic health of communities. The restoration and maintenance of water supply and wastewater infrastructure are ongoing challenges for the Nation. Cured-in-place pipe (CIPP) composites technology is a popular method for repairing buried sewer pipes. CIPP technology is also now growing in popularity for repairing drinking water pipes. This is due in large part to economic considerations, as it can be 60-80% less costly than other repair alternatives. Unfortunately, the process of curing (polymerizing) the new plastic inside the damaged pipe can release hazardous materials into the air. For drinking water applications, the CIPPs can allow chemicals to leach into drinking water. Chemical air releases have resulted in illness to members of the general public and workers, and contributed to one worker fatality. The overall goal of this research is to reduce chemical volatilization from CIPP by understanding mechanisms of chemical release. This research directly addresses multiple National Academy of Science, Engineering, and Medicine grand challenges focused on restoring infrastructure, sustainably supplying water, building healthy cities, and reducing pollution.

The student will work with a graduate student and help evaluate chemical emissions during plastic manufacture using heat and steam. Sewer and drinking water resins will be explored. The student will help conduct the laboratory experiments, sample analysis, data analysis, interpretation, and reporting. Results will be shared with health officials, municipalities, and regulators after study completion. Prior studies where undergraduates have contributed on this topic can be found on the website listed below.
Research categories:
Composite Materials and Alloys, Energy and Environment, Engineering the Built Environment, Environmental Characterization, Material Processing and Characterization
Preferred major(s):
  • No Major Restriction
Desired experience:
Strong work ethic and commitment to learn and apply knowledge.
School/Dept.:
Lyles School of Civil Engineering
Professor:
Andrew Whelton

More information: www.CIPPSafety.org

 

SCALE Heterogeneous Integration/ Advanced Packaging: Self-alignment Technology for 3D System Integration 

Description:
This project is one of several SCALE SURF research projects. SCALE projects are restricted to students who are U.S. Citizens. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023.

For the typical 3D integration scheme, die-to-wafer bonding is a key technology that can enable the stacking of different chips, such as logic, memory, or power devices. Compared with wafer-to-wafer bonding, it is challenging for die-to-wafer bonding to achieve high throughput while maintaining a high alignment accuracy. Researchers have been investigating different self-alignment technologies to improve the high-precision chip alignment accuracy for die-to-wafer bonding, such as Surface tension-driven with hydrophilic chip surfaces. In this topic, we will explore innovative self-alignment methods for advanced die-to-wafer bonding, enabling high throughput heterogeneous integration.

Reference: Fukushima, Takafumi, et al. "Self-assembly technologies with high-precision chip alignment and fine-pitch microbump bonding for advanced die-to-wafer 3D integration." 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011.)

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.

Research categories:
Advanced Packaging, Composite Materials and Alloys, Fluid Modelling and Simulation, Heterogeneous Integration, Material Modeling and Simulation, Material Processing and Characterization, Microelectronics, Nanotechnology, Thermal Technology
Preferred major(s):
  • Electrical Engineering
  • Mechanical Engineering
  • Materials Engineering
Desired experience:
1. Microelectronics, micro/nanotechnology courses 2. Clean room fabrication experience 3. Enthusiasm for material fabrication and characterizations 4. Familiar with SEM, TEM analysis 5. Fluid mechanics Academic Years Eligible: Rising juniors and seniors with the desired experience will be preferred, but rising sophomores are also eligible to apply.
School/Dept.:
ME
Professor:
Tiwei Wei

More information: https://alphalab-purdue.org/

 

Structural Engineering for Blast Resistant Design 

Description:
Today’s structures are highly engineered buildings and bridges capable of carrying everyday and extreme loads. In this project, students will get to work on understanding blast engineering design with a special focus on building materials like concrete and steel. Undergraduate researchers will work day-to-day alongside graduate students and permanent staff to create test plans, fabricate test specimens, and test large-scale structures to failure. Students will leave this summer with a greater understanding of engineering principles including structural dynamics, impact and blast loading, and composite behavior.
Research categories:
Composite Materials and Alloys, Energy and Environment, Engineering the Built Environment, Other
Preferred major(s):
  • No Major Restriction
  • Civil Engineering
  • Mechanical Engineering
  • Mechanical Engineering Technology
  • Aeronautical and Astronautical Engineering
  • Aeronautical Engineering Technology
  • Construction Engineering
  • Construction Management Technology
  • Engineering (First Year)
  • Materials Engineering
Desired experience:
Willing to work in a large-scale structural testing facility which may include some manual labor.
School/Dept.:
Civil Engineering
Professor:
Amit Varma

More information: https://engineering.purdue.edu/~ahvarma/

 

Super-Resolution Optical Imaging with Single Photon Counting and Optomechanics with Nanostructured Membranes 

Description:
Two projects are available. One involves the investigation of enhancing optical imaging resolution using single photon counting techniques. Conventional optical imaging has a hard limit on its spatial resolution, to about one half of the wavelength, and many situations can benefit from higher resolution. In addition, it is challenging to image through scattering media. By way of example, being able to sense with light deeper in the brain would be of enormous benefit in neuroscience. The statistics of photons emitted by or transmitted through an object contain valuable information about the object which could be used to enhance image resolution and possibly see through substantial background scatter. Experiments will be conducted using laser light and with a set of single photon avalanche detectors (SPADs) to measure photon correlations in time, over wavevector (direction), and between detectors in various imaging configurations. Results from these experiments will be used to assess the effectiveness of various techniques for enhancing spatial resolution in imaging applications. This work has a diverse set of potential applications including biological imaging, sensing defects in semiconductors, and imaging through fog. The other project relates to experimental work and the modeling of optical forces on structured membranes induced by a laser. The mechanical motion of a thin membrane deflected by laser light will be used to determine the membrane properties from experimental and simulated data. This will allow extraction of the mechanical material properties and more generally the validation of a theory for optomechanics that can then be used in design. The nascent field of optomechanics offers enormous impact scope, including remote actuation and propulsion, of importance in fields as diverse and molecular biology, communication, and transport. This project relates to attaining the underpinnings to move along such paths in engineering, as well as the basic physics of optical forces in material at small length scales.
Research categories:
Big Data/Machine Learning, Biological Characterization and Imaging, Biological Simulation and Technology, Composite Materials and Alloys, Deep Learning, Material Processing and Characterization, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Electrical Engineering
  • Mechanical Engineering
  • Physics
  • Biomedical Engineering
Desired experience:
Students with an interest in experimental or modeling work and some background in electromagnetics would be a good fit for this project. The undergraduate student will work with graduate students to perform experiments in an optics laboratory, modeling, data analysis using MATLAB or python, and review relevant literature.
School/Dept.:
Electrical Engineering
Professor:
Kevin Webb