2023 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Chemical Catalysis and Synthesis (10)

 

AAMP-UP Project 20: Understanding Adhesion of Energetic Particles 

Description:
This project is focused on quantifying the van der Waals adhesion of energetic particles to surfaces of interest. Better understanding how energetic particles adhere to surfaces can improve explosive detection systems and help enhance the performance of polymer-bonded explosives. Atomic force microscopy is used to directly measure the adhesion between energetic particles and binders.

This project is from the AAMP-UP summer program, which is a different program than SURF. AAMP-UP is a 10-week summer program that provides STEM undergraduates the chance to participate in national defense and military research. The program is sponsored by the U.S. Army Research Laboratory in Aberdeen, MD.
Research categories:
Chemical Unit Operations, Chemical Catalysis and Synthesis, Other
Preferred major(s):
  • No Major Restriction
Desired experience:
AAMP-UP asks that each student applicant have finished 1 semester of higher education, be currently enrolled in a college or university, and graduate after August 2023. In addition, students must be U.S. Citizens or U.S. Persons. No prior experience with the U.S. military is required. No summer classes are allowed.
School/Dept.:
Chemical Engineering
Professor:
Stephen Beaudoin

More information: https://engineering.purdue.edu/Energetics/AAMP-UP/index_html

 

AAMP-UP Project 21: Energetic Particle Adhesion via Enhanced Centrifuge Method 

Description:
Composite solid propellants, consisting of energetic particles embedded in a polymeric binder, are utilized extensively in projectile devices. Additive manufacturing of these propellants is a promising method to enhance their reliability and effectiveness; however, such materials often fail during launch due to insufficient adhesion between components. Hence, it is of utmost importance to maintain a high adhesive force between the particles and the surrounding binder, which would ensure that the required combustion reactions take place even as the projectile moves at high speeds. Thus, we seek to quantify how the adhesive behavior of the particles changes using the enhanced centrifuge method, which implements experimental and computational techniques in order to map apparent centrifugal forces to intermolecular van der Waals forces.

This project is from the AAMP-UP summer program, which is a different program than SURF. AAMP-UP is a 10-week summer program that provides STEM undergraduates the chance to participate in national defense and military research. The program is sponsored by the U.S. Army Research Laboratory in Aberdeen, MD.
Research categories:
Chemical Unit Operations, Chemical Catalysis and Synthesis, Other
Preferred major(s):
  • No Major Restriction
Desired experience:
AAMP-UP asks that each student applicant have finished 1 semester of higher education, be currently enrolled in a college or university, and graduate after August 2023. In addition, students must be U.S. Citizens or U.S. Persons. No prior experience with the U.S. military is required. No summer classes are allowed.
School/Dept.:
Chemical Engineering
Professor:
Stephen Beaudoin

More information: https://engineering.purdue.edu/Energetics/AAMP-UP/index_html

 

CISTAR - Decarbonization of the High-Carbon Intensive and High-Volume Commodity Chemicals Production through Renewable Electrification 

Description:
This project is supported by CISTAR, an NSF Engineering Research Center headquartered at Purdue
Electrification of industrial processes is being frequently mentioned as an option to reduce greenhouse gas emissions from energy-intensive industries. Electricity is a versatile energy carrier which presents a variety of electrification options. The increasing availability of cheap renewable electricity provides an opportunity to decarbonize energy intensive processes. As part of this decarbonization effort, the commodity chemical industry is an important target due to its large energy requirements and greenhouse gas emissions. One potential paradigm for electrification involves replacing the use of steam, generated by burning fossil fuels, as a source of heat in chemical processes to processes with direct electrical heating using renewable energy sources. This project aims to identify and quantify areas where energy is currently transferred by steam can be efficiently transferred by renewable electrification. The target commodity chemicals are ammonia, ethylene, propylene, and methanol.

Students working on this project will also have the opportunity to participate in information sessions, tours and informal mentoring with CISTAR's partner companies.

Purdue students are not eligible for this project. Students must be from outside institutions. Participants must be US Citizens. Students with disabilities, veterans, and those from traditionally underrepresented groups in STEM are encouraged to apply.

More information: https://cistar.us/
Research categories:
Chemical Unit Operations, Chemical Catalysis and Synthesis, Energy and Environment
Preferred major(s):
  • Chemical Engineering
School/Dept.:
Chemical Engineering
Professor:
Cornelius Masuku

More information: https://cistar.us/ewd/undergrad_overview/research-experience-for-undergraduates-reu-program

 

CISTAR - High temperature catalysts for conversion of ethylene and propylene to gasoline and diesel fuel 

Description:
This project is supported by CISTAR, an NSF Engineering Research Center headquartered at Purdue.

CISTAR's vision is to convert natural gas liquids, for example, ethane and propane, to fuels and chemicals by two catalytic steps. The first requires dehydrogenation of alkanes to olefins, which are subsequently converted to final products. This project investigates a new class of catalyst for conversion of ethylene and propylene to higher molecular weight hydrocarbons suitable for blending into gasoline or diesel fuels. These reactions occur at high temperature and pressure in a fixed bed reactor. The research plan is to synthesize catalysts and test these to determine the rates, selectivity and stability.

Students working on this project will also have the opportunity to participate in information sessions, tours and informal mentoring with CISTAR's partner companies.

Purdue students are not eligible for this project. Students must be from outside institutions. Participants must be US Citizens. Students with disabilities, veterans, and those from traditionally underrepresented groups in STEM are encouraged to apply.

Research categories:
Chemical Catalysis and Synthesis
Desired experience:
None, but reaction engineering is desirable.
School/Dept.:
Chemical Engineering
Professor:
Jeff Miller

More information: https://cistar.us/

 

CISTAR - Synthesis of Alloy Nanoparticles for Selective Catalysis 

Description:
This project is supported by CISTAR, an NSF Engineering Research Center headquartered at Purdue.

In this project, students will develop precise colloidal and impregnation-based syntheses for supported metal alloy nanoparticles. These materials will then be utilized as heterogeneous catalysts in thermal and solution-phase hydrogenation and dehydrogenation reactions. A particular focus will be placed on controlling the ensemble geometry and electronic properties of the alloy surface in order achieve highly selective catalysis.

Students working on this project will also have the opportunity to participate in information sessions, tours and informal mentoring with CISTAR's partner companies.

Purdue students are not eligible for this project. Students must be from outside institutions. Participants must be US Citizens. Students with disabilities, veterans, and those from traditionally underrepresented groups in STEM are encouraged to apply.
Research categories:
Chemical Catalysis and Synthesis
Preferred major(s):
  • Chemistry
  • Chemical Engineering
Desired experience:
General chemistry, organic chemistry
School/Dept.:
Indiana
Professor:
Christina Li

More information: https://cistar.us/

 

CISTAR - Synthesis of tailored carbon supports for non-oxidative methane conversion 

Description:
This project is supported by CISTAR, an NSF Engineering Research Center headquartered at Purdue.

Methane is the major component of shale gas, and more research is needed to develop non-oxidative conversion routes to higher olefins and aromatics. Carbon-based catalysts have been shown to be effective at non-oxidative methane conversion to these products, but the active sites and reaction mechanisms remain unclear. This project will work on developing synthesis methods to alter the surface areas and active sites in porous carbon materials for methane conversion, and studying their catalytic reactivity and selectivity.

Students working on this project will also have the opportunity to participate in information sessions, tours and informal mentoring with CISTAR's partner companies.

Purdue students are not eligible for this project. Students must be from outside institutions. Participants must be US Citizens. Students with disabilities, veterans, and those from traditionally underrepresented groups in STEM are encouraged to apply.
Research categories:
Chemical Catalysis and Synthesis
Preferred major(s):
  • Chemical Engineering
School/Dept.:
IN
Professor:
Rajamani Gounder

More information: https://cistar.us/

 

CISTAR - Synthesis of zeolite catalysts with tailored diffusion properties 

Description:
This project is supported by CISTAR, an NSF Engineering Research Center headquartered at Purdue.

Olefin oligomerization is a key step in shale gas upgrading routes to heavier molecular weight products. Acidic zeolites are an important class of materials to catalyze oligomerization reactions, but reaction rates and selectivities are influenced by coupled reaction-transport phenomena. This project will focus on synthesizing zeolite crystallites with tailored diffusion properties (e.g., crystal size and morphology, acid site distributions) to influence the rates and selectivities of olefin oligomerization.

Students working on this project will also have the opportunity to participate in information sessions, tours and informal mentoring with CISTAR's partner companies.

Purdue students are not eligible for this project. Students must be from outside institutions. Participants must be US Citizens. Students with disabilities, veterans, and those from traditionally underrepresented groups in STEM are encouraged to apply.
Research categories:
Chemical Catalysis and Synthesis
Preferred major(s):
  • Chemical Engineering
School/Dept.:
IN
Professor:
Rajamani Gounder

More information: https://cistar.us/

 

Paper-based Microfluidics for Rapid Infectious Disease Diagnostics 

Description:
The goal of the project is to design low-cost and user-friendly paper-based point-of-care (POC) diagnostics tests for the detection of a panel of infectious diseases.
These student will be involved directly in the research related to the fabrication and testing of these point-of-care technologies, designed to allow for sensitive, rapid, and repeatable multiplexed detection of a variety of food and waterborne pathogens with high precision and accuracy and minimal sample handling. Target pathogens include parasites such as P. falciparum, (malaria), and Cyclospora Cayetanensis (found in agricultural water that severely lacks detection technologies), along with bacteria-induced foodborne and waterborne infectious diseases such as E. Coli O157:H7, S. Typhimurium, Listeria spp. and Campylobacter Jejuni. These will be aptamer-enabled biosensors, which will be further amenable for the rapid and low cost detection of other diseases, such as inflammation marker panels for Troponin, CRP, IL-6, and TNF-α. Aptamers are DNA molecules with high stability, high affinity for both small molecules and whole-cell pathogens, and are robust when exposed to harsh environments.

The main biorecognition element for the detection of these whole-cell pathogens, responsible for infectious diseases of interest, will be aptamers, which will allow for whole-cell pathogen detection, without amplification or cell lysis. Blood serum samples will be loaded in the sample well, and will diffuse to the four testing areas, each labeled for one individual pathogen. The initially negative testing areas will display a pink color. A positive test for one of the pathogens will be recognized by a change of color from pink to purple. A 3D printed portable imaging box, equipped with an image capture system and embedded color recognition and analysis software will allow for images of the test strips to be taken at constant illumination, on site, at primary care clinics or anywhere at the patient’s home, regardless of time of the day and natural illumination conditions. The portable imaging device will be able to display the test results on the screen. Thus, the detection limit of the diagnostic devices will be pushed down to levels beyond the ones possible with the naked eye, considering the limitation of human vision performance, especially at low illumination levels. A negative test for one pathogen will display an unchanged pink color of the corresponding testing area. We will optimize the device that has already been demonstrated in preliminary work in Stanciu’s group for food samples for E. Coli O157:H7, Listeria monocytogenesis and Salmonella typhimurium, to serum samples for the four pathogens of interests. Ultimately, the project's objective is to establish device performance (detection limit, linear range) .



Research categories:
Chemical Catalysis and Synthesis, Internet of Things (IoT), Medical Science and Technology, Nanotechnology, System-on-a-Chip
Preferred major(s):
  • No Major Restriction
Desired experience:
General chemistry or biochemistry laboratory training.
School/Dept.:
Materials Engineering
Professor:
Lia Stanciu

More information: https://lia-stanciu.squarespace.com/

 

Synthesis, processing, and characterization of next-generation sustainable polymers  

Description:
Plastics are ubiquitous in many facets of our lives, and the plastics industry is the third-largest manufacturing sector in the United States. But as plastics production develops rapidly, the long-term environmental challenges are globally recognized. Chemically resistant plastic products have extremely long lifetimes before completely decomposing — a single-use coffee pod can last 500 years in a landfill. Plastic waste accumulation has led to pollution that affects land, waterways and oceans; organisms are being harmed by entanglement or ingestion.

Closed-loop circular utilization of plastics is of manifold significance, yet energy-intensive and poorly selective scission of the ubiquitous carbon-carbon (C-C) bonds in contemporary commercial polymers pose tremendous challenges to envisioned recycling and upcycling scenarios. Our group focuses on a unique topochemical approach for creating elongated C-C bonds with a bond length of 1.57~1.63 Å (in contrast to conventional bonds with a C-C bond length of ~1.54 Å) between repeating units in the solid state with decreased bond dissociation energies. These polymers with elongated and weakened C-C bonds exhibit rapid depolymerization within a desirable temperature range (e.g., 140~260 °C), while otherwise remaining remarkably stable under harsh conditions.

Students will get involved in the following research activities:

1. Synthesis of novel polymer single crystals via topochemical approach
2. Synthesis of polymers with elongated and weakened C-C bonds for circular utilization
3. Processing, characterization, and practical application of chemically recyclable (depolymerizable) polymer single crystals and polyolefin materials.
Research categories:
Chemical Catalysis and Synthesis, Ecology and Sustainability, Energy and Environment, Material Processing and Characterization
Preferred major(s):
  • No Major Restriction
School/Dept.:
Davidson School of Chemical Engineering
Professor:
Letian Dou

More information: https://letiandougroup.com/

 

Using Machine Learning to Discover Perovskite Photocatalysts 

Description:
Synopsis: The goal of this project is to apply quantum mechanics-based density functional theory simulations and machine learning to design novel halide perovskites with targeted photovoltaic, surface, and adsorption behavior for improved photocatalytic performance.

Targeted Need: Challenges of environmental pollution, global energy shortage, and overreliance on fossil fuels can be addressed using photocatalysis, where solar energy is harnessed for chemical processes such as hydrogen production, degradation of pollutants, and CO2 reduction [1]. Many semiconductors have been used as photocatalysts based on suitable band edge positions relative to redox potentials, strong optical absorption, and desirable adsorption and desorption of chemical species; examples include TiO2, Ga2O3, C3N4, CdS, and ZnS [2]. However, many limitations exist owing to wider than desired band gaps, ineffectiveness of charge carriers, and formation of harmful defects, motivating the search for novel and improved materials. Cheap and high-performing photocatalysts can also help avoid the use of transition or precious metals such as Pt and Pd as catalysts [3]. The chemical space of potential semiconductor photocatalysts is massive and not conducive to brute-force experimentation or even computation, which necessitates the use of data-driven strategies combining large computational datasets and state-of-the-art machine learning [4], prior to experimental validation and discovery.

Opportunity: Metal halide perovskites (HaPs) have risen in prominence for solar and related optoelectronic applications, and are suggested as promising photocatalysts. Recent publications report the use of MAPbI3, MAPbBr3 (MA=methylammonium), CsPbI3, Cs2BiAgBr6, and other single/double inorganic/hybrid perovskites, either in bulk crystalline form, 2D variants, nanoclusters, or as part of heterostructures, for water splitting, CO2 reduction, and organic synthesis [1,2]. However, this field remains very much in its infancy—HaPs are desirable photovoltaic (PV) materials with extremely tunable properties, but an exhaustive study of band edges, surface energies, and adsorption behavior across a wide chemical space is missing. Using high-throughput density functional theory (HT-DFT) computations, our research group has developed an initial dataset of the stability, band gap, and optical absorption characteristics of ABX3 HaPs with mixing at A, B, or X sites using common elemental or molecular species [5]. This provides the starting point for exploring photocatalytic activity of HaPs as a function of composition, phase, and surface orientation, by combining HT-DFT with machine learning (ML). Since DFT computations are expensive and cannot be performed endlessly, ML models trained on DFT data can help predict optical, electronic, surface, and adsorption properties of millions of new perovskite compositions, to accelerate by several orders of magnitude the screening of novel HaPs with a suitable combination of properties for catalyzing reactions.

Objectives: In this project, a HT-DFT+ML prediction, screening, and design approach will be applied to discover novel HaP compositions that display desired stability, optical absorption, surface stability, and activity towards species, for next-generation photocatalysis of technologically-important chemical processes, including CO2 reduction, H2 and O2 evolution (water splitting), and synthesis of various hydrocarbons. Specific objectives include: (i) using the existing DFT dataset of HaP crystal structures to build surface slabs, calculate surface energies, and adsorption energies of various molecules on stable surfaces, (ii) unique encoding of each material (descriptors) in terms of structure, composition, surface atoms, adsorbing species, etc. [4], and (iii) training of ML models based on regression techniques such as random forests and neural networks, ensuring rigorous optimization of hyperparameters, training data size, input dimensions, and applicability towards any new data point.

Role of Student Researcher: Using our available codes, software, and computing resources, students can quickly start running and analyzing simulations of photocatalytic properties. A variety of existing schemes can be applied and tested for numerical representation/description of materials and property prediction, such as using graph convolutional neural networks (GCNNs) for automatic crystal structure representation, which our group has good experience with. Student will carry out DFT and ML tasks under the guidance of a graduate student and the professor, and will be given the opportunity to lead one or two potentially high-impact journal publications. Given the prior work that has gone into this project, chances of success are very high, and future prospects will be plenty.

References
1. J. Yuan et al., Nanoscale, 13, 10281 (2021).
2. K. Ren et al., Journal of Materials Chemistry A, 10, 407 (2022).
3. Z. Luo et al., Nature Communications, 11, 4091 (2020).
4. J. Schmidt et al., npj Computational Materials, 5, 83 (2019).
5. A. Mannodi-Kanakkithodi et al., Energy and Environmental Science, 15, 1930-1949 (2022).
Research categories:
Big Data/Machine Learning, Chemical Catalysis and Synthesis, Energy and Environment, Material Modeling and Simulation
Preferred major(s):
  • No Major Restriction
Desired experience:
Any experience with coding and/or data science will be useful, but not necessary. If student has taken courses on fundamentals of materials science, that will be helpful.
School/Dept.:
Materials Engineering
Professor:
Arun Kumar Mannodi Kanakkithodi

More information: https://www.mannodigroup.com/