2022 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Nanotechnology (18)

 

Blood sample preparation for HIV diagnostics in a smartphone-based microfluidic device 

Description:
HIV/AIDS effects millions of people all over the world. The antiretroviral therapy used to treat HIV is effective, but HIV first must be diagnosed and then monitored to measure the treatment effectiveness to eliminate transmission to others and increase a patient’s quality of life. The Linnes Lab uses state of the art microfluidic technologies to prevent, detect, and understand the pathogenesis of diseases, such as HIV. This undergraduate summer research project will focus on developing new technology for HIV diagnostics that will also aid in diagnostics research of other bloodborne illnesses. The student will learn about biological sample preparation, nucleic acid amplification methods, microfluidic device design, fabrication, and testing, and rapid prototyping tools such as 3D printing and laser cutting. The researcher will develop a new tool for sample preparation of the blood that minimizes the number of user steps to integrate into an easy-to-use point-of-care diagnostic tool for people living with HIV to monitor their viral load within the convenience and privacy of their homes. The new tool design specifications include that it must be compatible with the smartphone imaging platform, microfluidic chip, and the HIV assay to diagnose the disease with high sensitivity and specificity.

Research categories:
Biological Characterization and Imaging, Fabrication and Robotics, Human Factors, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Biomedical Engineering
  • Biochemistry
  • Biological Engineering - multiple concentrations
  • Microbiology
Desired experience:
3d printing and prototyping, medical technology
School/Dept.:
Weldon School of Biomedical Engineering
Professor:
Jacqueline Linnes

More information: https://engineering.purdue.edu/LinnesLab

 

Drop-on-demand printing of soft biomaterials  

Description:
This project aims to develop drop-on-demand (aka inkjet) printing technology of soft biomaterials including cell-laden hydrogel and RNA containing materials. Specifically, the undergraduate student will formulate and characterize the mechanical and rheological properties of polymeric inks to print and cure for advanced tissue constructs or drug delivery systems.
Research categories:
Cellular Biology, Material Processing and Characterization, Medical Science and Technology, Nanotechnology
Preferred major(s):
  • Mechanical Engineering
  • Chemical Engineering
  • Biomedical Engineering
Desired experience:
Course work of solid or fluid mechanics are required. Experience in LabVIEW, CAD software and Matlab are preferred. Cell biology background is plus but not required.
School/Dept.:
Mechanical Engineering
Professor:
Bumsoo Han

More information: http://biotransportgroup.org

 

Experimental Study of Heat Transfer in Nanomaterials 

Description:
This project deals with the study of heat transfer in very thin film materials using Raman Spectroscopy and Ultrafast Laser Spectroscopy. Heat transfer in nanoscale materials including 2D materials (very thin layered materials bonded by van der Waal’s force) shows superior characteristics for applications in numerous advanced devices. Their thermal transport behaviors are also different compared with bulk materials, and an understanding of the transport process is important for applications of these materials. We use non-contact, optical method (i.e., lasers etc.) to investigate heat flow in these materials. The undergraduate student will work with graduate students to learn to use state-of-the-art experimental facilities, carry out experiments, and analyze experimental results.
Research categories:
Energy and Environment, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Physics
Desired experience:
Junior or Senior standing
School/Dept.:
Mechanical Engineering
Professor:
Xianfan Xu

More information: https://engineering.purdue.edu/~xxu/; https://engineering.purdue.edu/NanoLab/

 

Field Engineering of Quantum Memories 

Description:
The goal of this project is to develop a quantum memory using a crystal that can store quantum optical information. Such quantum memory will be essential for developing the future quantum networks where storage of optical entanglement is key to long-distance secure communication. The quantum memory operates below 4K temperature and it requires field engineering to control optical information. Students will be designing and implementing electronic circuit and electrodes around the crystal to achieve high frequency , high voltage control of the field around the crystal used as quantum memory. This is an experimental project in Prof Hosseini Lab in the Birck Nanotechnology Center at Purdue Discovery Park.
Research categories:
Material Processing and Characterization, Nanotechnology, Other
Preferred major(s):
  • Electrical Engineering
  • Electrical Engineering Technology
  • Physics
Desired experience:
Junior or senior students with GPA>3.6
School/Dept.:
ECE
Professor:
Mahdi Hosseini
 

High Field Vector Magnetization Measurements in Quantum Materials 

Description:
The goal of this project is to set up a novel method for measuring the magnetic properties of quantum materials. Quantum magnets hold a lot of promise in new devices for the future where the properties are determined by tenets of the Heisenberg Uncertainty principle. But how to get access to the weak quantum effects, especially in a challenging environment of a dilution refrigerator in millikelvin? Here we set up a Josephson Junction-based device that can sample small magnetic fields from quantum materials placed at a milliKelvin temperature at up to a 14 T magnetic field, and attempt to discern the magnetic properties, and assess their usefulness for future magnetic routes to solid-state quantum computation.
Research categories:
Material Modeling and Simulation, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • No Major Restriction
  • Physics
  • Electrical Engineering
  • Mechanical Engineering
  • Computer Engineering
  • Chemistry
Desired experience:
The candidate should have excellent in-lab etiquettes and desirably have some initial experience in working in a research laboratory project. The project involves working with cryogenic systems under high magnetic fields with delicate electronics. Excellent communication and interpersonal skills are also desired. The person should have some expertise in electrical engineering and circuits, and idea of fabrication.
School/Dept.:
Physics and Astronomy
Professor:
Arnab Banerjee
 

High Performance Perovskite Solar Cells 

Description:
Sunlight is the most abundant renewable energy resource available to human beings, and yet it remains one of the most poorly utilized sources of clean energy. Solar cell modules incorporating single crystalline silicon and gallium arsenide currently provide the highest efficiencies for solar energy conversion to electricity but remain limited due to their high costs.

In the past few years, perovskite solar cell technology has made significant progress, improving in efficiency to ~25%, while maintaining attractive economics due to the use of inexpensive soluble materials coupled with ultra low-cost deposition technologies. However, the real applications of these devices requires new breakthroughs in device performance, large-scale manufacturing, and improved stability. Among these, stability and degradation are among the most significant challenges for perovskite technologies. Perovskite absorber layer and organic charge transport materials can be sensitive to water, oxygen, high temperatures, ultraviolet light, and even electric field, all of which will be encountered during operation. To address these issues, significant efforts have been made, including mixed dimensionality and surface passivation; alternative absorber materials and formulations, new charge transport layers, and advanced encapsulation techniques, etc. Now, T80 lifetimes (i.e., the length of time in operation until measured output power is 80% of original output power) of over 1,000 hours have been demonstrated. However, it is still far below the industry required 20 years lifetime, indicating the ineffectiveness of current approaches. To make this advance, non-incremental and fundamentally new strategies are required to improve the intrinsic stability of perovskite active materials.

In this project, we propose a new paradigm to develop intrinsically robust perovskite active layers through the incorporation of multi-functional semiconducting conjugated ligands. In preliminary work, we have demonstrated that semiconducting ligands can spontaneously organize within the active layer to passivate defects and restrict halide diffusion, resulting in dramatic improvements in moisture and oxygen tolerance, reduced phase segregation, and increased thermal stability. Combining a team with expertise spanning the gamut of materials synthesis, computational materials design, and device engineering, we will develop a suite of multi-functional semiconducting ligands capable of improving the intrinsic stability perovskite materials while preserving and even enhancing their electronic properties. Through this strategy, we aim to achieve over 25% cell efficiency with operational stability over 20 years for future commercial use.
More information: https://letiandougroup.com/
Research categories:
Energy and Environment, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • No Major Restriction
School/Dept.:
Chemical Engineering
Professor:
Letian Dou

More information: https://letiandougroup.com/

 

High-efficiency solar-powered desalination  

Description:
Water and energy are tightly linked resources that must both become renewable for a successful future. The United Nations predicts that 6 billion people will face water scarcity by 2050. This warrants the need to develop efficient and realizable engineering solutions for desalination using the vast availability of solar energy.
This project aims to design, prototype, and test novel configurations for membrane-based desalination (reverse osmosis), powered by solar-thermal engines. The student will be part of a team of graduate and undergraduate students responsible for process design, thermal-fluid modeling and simulation, hydraulic circuit prototyping and testing, and experimental data analysis.
All students will be required to read relevant, peer-reviewed literature and keep a notebook or log of weekly research progress. At the end of the semester or term, each student will present a talk or poster on their results.
Research categories:
Ecology and Sustainability, Energy and Environment, Fluid Modelling and Simulation, Internet of Things, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
Applicants should have an interest in thermodynamics, water treatment, and sustainability. Applicants with experience in some (not all) of the following are preferred: experimental design and prototyping, manufacturing, Python, LabView, EES, MATLAB, 3D CAD Software, & Adobe Illustrator. Rising Juniors and Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
David Warsinger

More information: www.warsinger.com

 

High-performance Radiative Cooling Nanocomposites 

Description:
Radiative cooling is a passive cooling technology without power consumption, via reflecting sunlight and radiating infrared heat, both into the deep space. Compared to conventional air conditioners, radiative cooling not only saves energy, but also combats climate crisis since all the heat goes to deep space instead of stays on the earth. Recently, our group has invented commercial-like particle-matrix paints (nanocomposites) that cool below the surrounding temperature under direct sunlight. The Purdue cooling paints attracted remarkable global attention and won a Guinness World Record. Read, for example, the BBC News coverage here: https://www.bbc.com/news/science-environment-56749105. Currently we are working to improve the performance and create new radiative cooling solutions.

In this SURF project, we are looking for self-motivated students to work with our PhD students. The student will first synthesize nanocomposites via some wet chemistry and/or 3D printing methods. The optical, mechanical, and other relevant properties will then be characterized with spectrometers and other specialized equipment. Field tests will be performed to measure the cooling performance of the materials and devices. The work is expected to results in journal paper(s) of high impact. Students who make substantial contributions to the work can expect to be co-authors of the paper(s).
Research categories:
Energy and Environment, Material Processing and Characterization, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Environmental and Ecological Engineering
Desired experience:
courses in heat transfer and thermodynamics are a plus but not required
School/Dept.:
Mechanical Engineering
Professor:
Xiulin Ruan

More information: https://engineering.purdue.edu/NANOENERGY/

 

In-Sensor Computing with Ferroelectric Resonators 

Description:
Edge computing is a growing necessity for the Internet of Things (IoT) given the demand for sensor networks collecting and communicating information to central processing points. The power required to transmit data at high bandwidth is prohibitive, and solutions for efficient lower level computation at each sensor node are required. Ferroelectrics (FEs), with unique hysteresis properties, are currently under investigation for in-memory computing. In this project, we will leverage the combined benefits of nonlinear piezoelectricity and hysteresis of ferroelectrics in the context of MEMS resonators to explore oscillatory computation for resonant sensors. Goals of this project include analysis and simulation of computational schemes based on existing large-signal FE models recently developed in our group, as well as experimental prototyping using existing ferroelectric resonators also previously designed in the HybridMEMS Lab. This would be the first experimental demonstration of FE resonant computation.
Research categories:
Internet of Things, Nanotechnology
Preferred major(s):
  • Electrical Engineering
  • Computer Engineering
  • Mechanical Engineering
School/Dept.:
ECE
Professor:
Dana Weinstein

More information: https://engineering.purdue.edu/hybridmems/

 

Mass spectrometry of biomolecules and nanoclusters 

Description:
We are using mass spectrometry to study the localization of lipids, drugs, and proteins in biological tissues and to prepare novel functional interfaces using well-defined polyatomic ions. The student will work with a graduate student mentor to either perform nanocluster synthesis and characterization using mass spectrometry and electrochemical measurements or to develop new analytical approaches for quantitative analysis of biomolecules in biological samples. In both projects, the student will be trained to operate state-of-the-art mass spectrometers and perform independent data acquisition and analysis. The student will also work with the scientific literature to obtain a broader understanding of the field.
Research categories:
Biological Characterization and Imaging, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • chemistry, biochemistry, computer science, engineering
Desired experience:
general chemistry, calculus, analytical or physical chemistry
School/Dept.:
Chemistry
Professor:
Julia Laskin

More information: https://www.chem.purdue.edu/jlaskin/

 

Modeling High Efficiency Thermophotovoltaic Systems 

Description:
This project studies by numerical simulation the impact of optical multilayer structure on improving the efficiency of thermophotovoltaic (TPV) devices. TPV devices convert heat to electricity using thermal radiation to illuminate a photo-voltaic (PV) diode made from semiconductor materials. Typically, this radiation is generated by a blackbody-like emitter. Thermal radiation includes a broad range of wavelengths, but only high energy photons can be converted to heat by the PV diode, which severely limits efficiency. Thus, introducing a selective emitter and filter to recycle unwanted photons can greatly enhance performance.

In this project, the student will develop/upgrade a GUI-based tool to calculate the emittance spectrum and efficiency of a multilayer structure based TPV device. The tool is hosted and run through nanoHUB.org - an open-access science gateway for cloud-based simulation tools and resources in nanoscale science and technology. The student will also work with graduate students and use this tool to study how to improve the TPV efficiency based on physical models.
Research categories:
Nanotechnology, Thermal Technology
Preferred major(s):
  • Electrical Engineering
  • Computer Engineering
  • Mechanical Engineering
  • Physics
Desired experience:
Programming experience in Python, C/C++, and/or MATLAB/Octave Enthusiasm for scientific computing Good understanding of electromagnetism and heat transfer
School/Dept.:
Electrical & Computer Engineering
Professor:
Peter Bermel
 

Nanoscale High-Speed 3D Printing  

Description:
The ability to create 3D structures in the micro and nanoscale is important for many applications including electronics, microfluidics, and tissue engineering. This project deals with development and testing of a setup for building 3D structures using a femtosecond pulsed laser. A method known as two photon polymerization is typically used to fabricate such structures in which a polymer is exposed to a laser beam and at the point of the exposure the polymer changes its structure. Moving the laser in a predefined path helps in getting the desired shape, and the structures are then built in a layer by layer fashion. The setup incorporates all the steps from a designing a CAD model file to slicing the model in layers to generating the motion path of the laser needed for fabricating the structure. Like many other 3D printing processes, 3D printing at nanoscale is also slow. In order to make a 3D structure rapidly, many processes are currently being developed, including projecting 2D images and printing 3D structures in a rapid, layer-by-layer fashion. Other efforts include the use of machine learning to produce high quality 3D parts and printing materials other than polymers to achieve specific mechanical, electrical or optical properties. The undergraduate student will work with graduate student to learn the state-of-the-art 3D nanoprinting systems, help to develop rapid printing processes, and analyze printing results.
Research categories:
Big Data/Machine Learning, Deep Learning, Fabrication and Robotics, Material Processing and Characterization, Nanotechnology
Preferred major(s):
  • Mechanical Engineering
  • Physics
  • Industrial Engineering
  • Computer Engineering
Desired experience:
Junior or Senior standing, knowledge in CAD, knowledge in Python is a plus
School/Dept.:
Mechanical Engineering
Professor:
Xianfan Xu

More information: https://engineering.purdue.edu/~xxu/; https://engineering.purdue.edu/NanoLab/

 

Nanotechnology-based advanced materials 

Description:
This project aims to develop advanced materials with programmability and multifunctionality. Two positions are available. One is for 2D materials (such as graphene and TMDs) for energy and electronics; the other is for DNA engineering for nanomachines.
Research categories:
Nanotechnology
Preferred major(s):
  • Mechanical Engineering
School/Dept.:
Mechanical Engineering
Professor:
Jong Hyun Choi
 

Polaritonic Energy Transport: Hybridizing Radiation and Conduction for Microelectronics Cooling 

Description:
Who we are… Specere is a latin word that means “to look or behold.” That’s what we do. We look, explore, and examine different ways to: (1) move energy with light and (2) get information from light. More specifically, we are a light lab employing infrared physics to create spectroscopic, thermal, and sensing solutions.

Who we are seeking… We look for motivated and hard-working undergraduates having both strong aspirations for post-graduate studies as well as those that are just “grad school curious.” All applicants should be capable of working independently while effectively communicating within a team setting.

Research Topic, Polaritonic Energy Transport: We seek to design materials capable of more effectively moving heat at extremely small scales like those in modern microelectronics. Success will enable: more efficient data centers, power electronics like those in EV’s, and new computing architectures.

What’ You’ll Do: Team members will be responsible for designing novel metamaterial stacks capable of maximizing heat transfer using a combination of computational modeling and experimental measurements of optical properties. Direct mentoring from Dr. Beechem will build your skills up in each area such that you will gain proficiency in advanced simulation (COMSOL) and spectroscopic tools (Raman, IR-ellipsometry). In addition, you will have the chance to participate in writing journal articles and pursuing patents based on your work.
Research categories:
Big Data/Machine Learning, Material Modeling and Simulation, Material Processing and Characterization, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
Desired experience:
Proficiency in Matlab, COMSOL or both is a plus.
School/Dept.:
School of Mechanical Engineering
Professor:
Thomas Beechem

More information: www.specere.org

 

Renewable energy-powered water technologies 

Description:
Water and energy are tightly linked resources that must both become renewable for a successful future. However, today, water and energy resources are often in conflict with one another, especially related to impacts on electric grids. Further, advances in nanotechnology, material science and artificial intelligence allow for new avenues to improve the widespread implementation of desalination and water purification technology. The team is pursuing multiple projects that aim to explore solar and wind-powered desalination, nanofabricated membranes, light-driven reactions, artificial intelligence control algorithms, and thermodynamic optimization of energy systems. The student will be responsible for fabricating membranes, building hydraulic systems, modeling thermal fluid phenomenon, analyzing data, or implementing control strategies in novel system configurations. More information here: www.warsinger.com
Research categories:
Big Data/Machine Learning, Chemical Catalysis and Synthesis, Ecology and Sustainability, Energy and Environment, Engineering the Built Environment, Environmental Characterization, Fluid Modelling and Simulation, Material Modeling and Simulation, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Civil Engineering
  • Environmental and Ecological Engineering
  • Chemistry
  • Chemical Engineering
  • Materials Engineering
Desired experience:
Applicants should have an interest in thermodynamics, water treatment, and sustainability. Applicants with experience in some (not all) of the following are preferred: experimental design and prototyping, manufacturing, Python, LabView, EES, MATLAB, 3D CAD Software, & Adobe Illustrator. Rising Juniors and Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
David Warsinger

More information: www.warsinger.com

 

Super-Resolution Optical Imaging with Single Photon Counting and Optomechanics with Nanostructured Membranes 

Description:
Two projects are available. One involves the investigation of enhancing optical imaging resolution using single photon counting techniques. Conventional optical imaging has a hard limit on its spatial resolution, to about one half of the wavelength, and many situations can benefit from higher resolution. In addition, it is challenging to image through scattering media. By way of example, being able to sense with light deeper in the brain would be of enormous benefit in neuroscience. The statistics of photons emitted by or transmitted through an object contain valuable information about the object which could be used to enhance image resolution and possibly see through substantial background scatter. Experiments will be conducted using laser light and with a set of single photon avalanche detectors (SPADs) to measure photon correlations in time, over wavevector (direction), and between detectors in various imaging configurations. Results from these experiments will be used to assess the effectiveness of various techniques for enhancing spatial resolution in imaging applications. This work has a diverse set of potential applications including biological imaging, sensing defects in semiconductors, and imaging through fog. The other project relates to optical forces on structured membranes induced by a laser. The modeling of the mechanical motion of a thin membrane deflected by laser light will be used to determine the membrane properties from experimental and simulated data. This will allow extraction of the mechanical material properties and more generally the validation of a theory for optomechanics that can then be used in design. The nascent field of optomechanics offers enormous impact scope, including remote actuation and propulsion, of importance in fields as diverse and molecular biology, communication, and transport. This project relates to attaining the underpinnings to move along such paths in engineering, as well as the basic physics of optical forces in material at small length scales.
Research categories:
Biological Characterization and Imaging, Biological Simulation and Technology, Deep Learning, Material Modeling and Simulation, Nanotechnology, Other
Preferred major(s):
  • Electrical Engineering
  • Physics
Desired experience:
Students with an interest in experimental work and a strong background in electromagnetics would be a good fit for this project. The undergraduate student will work with graduate students to perform experiments in an optics laboratory, perform modeling and data analysis using MATLAB or python, and review relevant literature to develop a working understanding of single photon measurement techniques and their applications to super-resolution imaging. This project would be suitable for students majoring in electrical engineering, physics, or a related discipline.
School/Dept.:
Electrical and Computer Engineering
Professor:
Kevin Webb
 

Thermal management of electronic devices 

Description:
The continued miniaturization of electronic devices, with expanded functionality at reduced cost, challenges the viability of products across a broad spectrum of industry applications. The electronics industry is driven by global trends in storage, transmission, and processing of extreme quantities of digital information (cloud computing, data centers), increasing electrification of the transportation sector (electric vehicles, hybrid aircraft, batteries), and the proliferation of interconnected computing devices (mobile computing, IoT, 5G). Proper thermal management of electronic devices is critical to avoid overheating failures and ensure energy efficient operation. In view of these rapidly evolving markets, most of the known electronics cooling technologies are approaching their limits and have a direct impact on system performance (e.g., computing power, driving range, device size, etc.).

Research projects in the Cooling Technologies Research Center (CTRC) are exploring new technologies and discovering ways to more effectively apply existing technologies to addresses the needs of companies and organizations in the area of high-performance heat removal from compact spaces. One of the distinctive features of working in this Center is training in practical applications relevant to industry. All of the projects involve close industrial support and collaboration in the research, often with direct transfer of the technologies to the participating industry members. Projects in the Center involve both experimental and computational aspects, are multi-disciplinary in nature, and are open to excellent students with various engineering and science backgrounds. Multiple different research project opportunities are available based on student interests and preferences.
Research categories:
Big Data/Machine Learning, Energy and Environment, Fluid Modelling and Simulation, Material Modeling and Simulation, Nanotechnology, Thermal Technology
Preferred major(s):
  • No Major Restriction
School/Dept.:
School of Mechanical Engineering
Professor:
Justin Weibel

More information: https://engineering.purdue.edu/CTRC/research/

 

Understanding Quantum Correlations of Light for Imaging  

Description:
We aim to leverage the expertise in two fields of computational and quantum imaging to develop classical algorithms to optimize and process quantum correlated images. On one hand, we introduce quantum complexity to imaging algorithms which deserves the attention of AI-assisted signal/image processing to extract hidden information from measurements. On the other hand, we iteratively engineer quantum states of a light source to enhance imaging resolution. Our goal is to implement a room-temperature quantum light source and understand and optimize its quantum correlations in multiple dimensions. We plan to apply computational and machine learning methods to reconstruct images using model-based gradient ascent and Bayesian estimation techniques.
Research categories:
Big Data/Machine Learning, Material Processing and Characterization, Nanotechnology, Thermal Technology
Preferred major(s):
  • Electrical Engineering
  • Computer Science
  • Physics
Desired experience:
Junior or Senior students with experience/knowledge of image processing, machine learning and optics. GPA>3.5
School/Dept.:
Electrical and computer Engineering
Professor:
Mahdi Hosseini