Accommodating Volume Changes in Three-Dimensional Nanoarchitectures Synthesized via Ammonia-Borane Reduction for Longer Life Li-ion Batteries

Interdisciplinary Areas: Micro-, Nano-, and Quantum Engineering, Power, Energy, and the Environment

Project Description

Three-dimensional metal/metal oxide nanoarchitectures [1,5] are under development via ammonia-borane reduction of various salts in aqueous medium to abate volume expansion during lithium storage. The formation of voids, chains, porosity in the new architectures allows accommodating volume expansion during the lithiation and contraction during delithiation, letting battery to cycle for the longer period of time with higher energy density compared to traditional batteries 

Start date

June 1, 2019

Postdoc Qualifications

Chemistry, Materials Science, Physics 


P. Veeraraghavan Ramachandran,

Vilas G. Pol,


1. G. Patrinoiu, V. Etacheri, S. Somacescu, V. S. Teodorescu, R. Birjega, D. C. Culita, C. N. Hong, V. G. Pol, J. M. Calderon-Moreno, O. Carp, “Spherical Cobalt/cobalt Oxide-carbon Composite Anodes for Enhanced Lithium-ion Storage”, Electrochimica Acta, 2018, 264,191-195.

2. T. L. Lee, R. A. Adams, C. Luhrs, A. Arora, V. G. Pol, C-H. Wu, J. Phillips, “High-Stability Tin/Carbon Battery Electrodes Produced Using Reduction Expansion Synthesis”, Carbon, 2018, 132, 411-419

3. P. V. Ramachandran, A. S. Kulkarni, Int. J. Hydrogen Energy 2017, 42, 1451.

4. P. V. Ramachandran, M. P. Drolet, A. S. Kulkarni, Chem. Commun. 2016, 52, 11897.

5. P. V. Ramachandran, A. S. Kulkarni, Y. Zhao, J. Mei, Chem. Commun. 2016, 52, 11885.