Advanced Admixtures from Industrial Waste Products for Sustainable High-Performance Concrete

Interdisciplinary Areas: Innovation and Making, Smart City, Infrastructure, Transportation, Power, Energy, and the Environment

Project Description

High-performance concrete (HPC) used for advanced infrastructure applications (bridges, dams, ultra-tall buildings) has 2-3 times the carbon footprint of conventional concrete mixtures due to the greater amount of cement required to achieve higher compressive strengths. Increasing the service life of HPC structures by including internal curing agents and other chemical admixtures is one proven way to reduce its carbon footprint. And chemical admixtures that are themselves more sustainable, including those derived from industrial waste or by-products, are expected to further reduce the overall carbon footprint of HPC. The goal of this project is to design and optimize a new class of recycled admixtures from environmental remediation efforts for the creation of more sustainable HPC, including reclaimed hydrogel and cellulosic particles. Lab-scale experiments and multiscale material characterization will be performed to identify key processing-structure-property relationships, including important HPC-admixture chemical and physical interactions and the internal curing performance of recycled admixtures after different preprocessing steps. Life cycle and technoeconomic assessments will be used to quantify overall environmental impacts.


Start Date

Summer or Fall 2024


Postdoc Qualifications

The ideal candidate for this position will have a Ph.D. in Materials Science and Engineering, Civil Engineering, Environmental Engineering, Chemical Engineering, Mechanical Engineering or a related field, and research experience with one or more of the following: cement-based materials, polymer science, industrial ecology, life cycle assessment, environmental remediation. Must demonstrate excellent communication skills in the form of published papers and conference presentations.



Kendra Erk
Associate Professor of Materials Engineering

John Sutherland
Fehsenfeld Family Head of Ecological and Environmental Engineering


Short Bibliography

Biernacki JJ, Bullard JW, Sant G, Brown K, Glasser FP, Jones S, Ley T, Livingston R, Nicoleau L, Olek J, Sanchez F, Shahsavari R, Stutzman PE (2017) “Cements in the 21st century: Challenges, perspectives, and opportunities.” Journal of the American Chemical Society

Schröfl C, Erk KA, Siriwatwechakul W, Wyrzykowski M, Snoeck D (2022) “Recent progress in superabsorbent polymers for concrete.” Cement and Concrete Research

Scrivener KL, John VM, Gartner EM (2018) “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry.” Cement and Concrete Research

Fennell P, Driver J, Bataille C, Davis SJ (2022) “Going net zero for cement and steel.” Nature

Wang G, Li F, Zhao F, Zhou L, Huang A, Wang L, Sutherland W (2022) “A product carbon footprint model for embodiment design based on macro-micro design features.” International Journal of Advanced Manufacturing Technology