Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2018 Research Symposium Abstracts.

2019 projects will continue to be posted through January!

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:

Life Science

 

Adhesives at the Beach

Research categories:  Bioscience/Biomedical, Chemical, Environmental Science, Life Science, Material Science and Engineering, Physical Science
School/Dept.: Department of Chemistry
Professor: Jonathan Wilker
Preferred major(s): Biology, Biomedical Engineering, Chemical Engineering, Chemistry, Materials Engineering
Desired experience:   This project will involve aspects of marine biology (e.g., working with live mussels), materials engineering (e.g., measuring mechanical properties of adhesives), and chemistry (e.g., making surfaces with varied functionalities). Few people at any level will come in with knowledge about all aspects here. Consequently we are looking for adventurous students who are wanting to roll up their sleeves, get wet (literally), and learn several new things.

The oceans are home to a diverse collection of animals producing intriguing materials. Mussels, barnacles, oysters, starfish, and kelp are examples of the organisms generating adhesive matrices for affixing themselves to the sea floor. Our laboratory is characterizing these biological materials, designing synthetic polymer mimics, and developing applications. Characterization efforts include experiments with live animals, extracted proteins, and peptide models. Synthetic mimics of these bioadhesives begin with the chemistry learned from characterization studies and incorporate the findings into bulk polymers. For example, we are mimicking the cross-linking of DOPA-containing adhesive proteins by placing monomers with pendant catechols into various polymer backbones. Adhesion strengths of these new polymers can rival that of the cyanoacrylate “super glues.” Underwater bonding is also appreciable. In order to design higher performing synthetic materials we must, first, learn all of the tricks used by nature when making adhesives. Future efforts for this coming summer will revolve around work with live mussels. Plans for experiments include changing the water, surfaces, and other environmental conditions around the animals. Mechanical performance of the resulting adhesives will be quantified and compared. Microscopy and other methods will be used to further understand the factors that dictate how these fascinating biological materials can function under such demanding conditions.

 

Computational modeling of mechanosensitive behaviors of cells

Research categories:  Bioscience/Biomedical, Computational/Mathematical, Life Science
School/Dept.: Weldon School of Biomedical Engineering
Professor: Taeyoon Kim
Preferred major(s): Mechanical Engineering
Desired experience:   C language, MATLAB, and other coding skills

Cells are able to sense surrounding mechanical environments. For example, a number of experiments have demonstrated that nano- and micro-patterns can guide migration of cells. This cell behavior is called the contact guidance and plays an important role in various physiological processes. In this research project, we aim to develop a rigorous computational model to study mechanisms of the contact guidance.

 

Elastically-driven flow focusing in micro-channels

Research categories:  Chemical, Life Science, Material Science and Engineering, Mechanical Engineering
School/Dept.: Chemical Engineering
Professor: Vivek Narsimhan
Preferred major(s): Chemical Engineering, Biological Engineering, Physics, Chemistry, Applied Mathematics
Desired experience:   Basic understanding of MATLAB

Separation of biological suspensions (e.g., cells, bacteria, macro-particles in solution) find wide use in the detection, diagnosis, and treatment of disease. Traditional techniques such as centrifugation and filtration (size-exclusion) are common, but for many point-of-care applications, it is desired to use strategies that are more gentle, cheap, portable, and low-volume. Here, microfluidics has emerged as an attractive method to address these concerns. Using channels with minimal power sources or moving parts (i.e., only syringes), several laboratory studies have demonstrated that one can purify and isolate cancer cells, leukocytes, or bacteria samples from diluted whole blood without the use of specific biomarkers. The scientific premise behind these studies is that various components in blood have different shapes, sizes, and deformability, and this variability in physical properties allows one to isolate/purify these components using flow forces.

In this project, we propose to improve focusing-based microfluidic techniques through the addition of long-chain, charge-neutral polymers (e.g., PEO or PVP) to the biological suspension. If added in dilute amounts (~1% wt. or below), these bio-compatible polymers impart additional flow forces to the particles in the fluid. These forces depend sensitively depend on the particle’s size, shape, and deformability, and hence can be used to fractionate particles by shape and size. The student will do the following: (a) fabricate non-spherical microparticles, and (b) visualize these particles flowing in a microfluidic device through microscopy or holography. The student will learn basic synthesis and image processing for this project.

 

Indoor Air Pollution Research: From Nano to Bio

Research categories:  Agricultural, Bioscience/Biomedical, Chemical, Civil and Construction, Environmental Science, Life Science, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: Civil Engineering
Professor: Brandon Boor
Preferred major(s): Students from all majors are welcome to apply.
Desired experience:   Interest in studying contaminant transport in the environment, human health, air pollution, HVAC and building systems, microbiology, nanotechnology, and atmospheric science. Experience working in a laboratory setting with analytical equipment and coding with MATLAB, Python, and/or R. Passionate about applying engineering fundamentals to solve real-world problems.

Airborne particulate matter, or aerosols, represent a fascinating mixture of tiny, suspended liquid and solid particles that can span in size from a single nanometer to tens of micrometers. Human exposure to aerosols of indoor and outdoor origin is responsible for adverse health effects, including mortality and morbidity due to cardiovascular and respiratory diseases. The majority of our respiratory encounters with aerosols occurs indoors, where we spend 90% of our time. Through the SURF program, you will work on several ongoing research projects exploring the dynamics of nanoaerosols and bioaerosols in buildings and their HVAC systems.

Nanoaerosols are particles smaller than 100 nm in size. With each breath of indoor air, we inhale several million nanoaerosols. These nano-sized particles penetrate deep into our respiratory systems and can translocate to the brain via the olfactory bulb. These tiny particles are especially toxic to the human body and have been associated with various deleterious toxicological outcomes, such as oxidative stress and chronic inflammation in lung cells. Bioaerosols represent a diverse mixture of microbes (bacteria, fungi) and allergens (pollen, mite feces). Exposure to bioaerosols plays a significant role in both the development of, and protection against, asthma, hay fever, and allergies.

Your role will be to conduct measurements of nanoaerosols and bioaerosols in laboratory experiments at the Purdue Herrick Laboratories, as well as participate in a field campaign at Indiana University - Bloomington in collaboration with an atmospheric chemistry research group. You will learn how to use state-of-the-art air quality instrumentation and perform data processing and analysis in MATLAB.

More information: https://www.brandonboor.com/

 

Low-cost user-friendly biosensors for animal health

Research categories:  Agricultural, Bioscience/Biomedical, Electronics, Innovative Technology/Design, Life Science, Material Science and Engineering, Mechanical Systems
School/Dept.: Agricultural and Biological Engineering
Professor: Mohit Verma
Preferred major(s): Biomedical engineering, biological engineering, electrical engineering, mechanical engineering, or other relevant fields
Desired experience:   To be successful at this position, you should have a GPA>3.5, prior experience working in a wet lab (ideally experience with bacterial culture and DNA amplification), experience building electromechanical devices, and the ability to work in a team.

Infectious diseases are a leading cause of economic burden on food production from animals. For example, bovine respiratory diseases lead to a loss of ~$480/animal. Current methods for tackling these diseases includes the administration of antibiotics by trial-and-error. This approach leads to failure of treatment in up to one-third of the cases. In addition, it also leads to a proliferation of antibiotic resistance in pathogens.

Our research project focuses on developing a low-cost user-friendly biosensor based on paper that can detect which pathogen is causing the disease and whether it exhibits antibiotic resistance. Such a biosensor would provide a readout to the farmer or the veterinary physician and suggest which antibiotics are likely to be successful.

The SURF student will have three objectives: i) design primers for detecting pathogens associated with bovine respiratory diseases, ii) build a device for processing the sample and extracting DNA that can be amplified by the biosensor, and iii) build a device for detecting colorimetric/fluorometric output from the biosensor.

More information: www.vermalab.com

 

Programming 3D and environmental data acquisition into iFly -- a mobile iOS app

Research categories:  Computer Engineering and Computer Science, Life Science
School/Dept.: Entomology
Professor: Trevor Stamper
Preferred major(s): Computer science or engineering, or biological sciences
Desired experience:   Must have programming knowledge in Swift programming language. Mobile device iOS programming experience is highly desired.

The student researcher will be programming in Swift language on the iFly project to allow environmental sensor systems and 3D sensing systems to input data directly into the app. Student researcher will also be improving other functions of the software to build a better user experience.

 

Structural and Functional Analysis of Signaling Pathways in Cancer

Research categories:  Bioscience/Biomedical, Life Science
School/Dept.: Biological Sciences
Professor: John Tesmer
Preferred major(s): Biology/Biochemistry related
Desired experience:   Freshman Chemistry and Organic Chemistry lab experience is desirable. Freshman level biology at minimum.

Undergraduate researchers in the lab will work alongside graduate students and postdoctoral fellows to decipher the molecular mechanisms of proteins involved in signal transduction from G protein coupled receptors to enzymes in the cell that control tumor growth and metastasis. Our lab uses X-ray crystallography, cryo-EM microscopy, and a battery of other biochemical and biophysical techniques to study proteins that we produce directly in our own lab. Trainees will emerge from our lab with advanced training in molecular biology, protein expression, and the purification of macromolecular complexes, and will receive an introduction to cutting edge biophysical techniques used to probe protein structure.