Fall 2022 Professor Stanley H. Chan
This page contains lecture videos and slides.
Please follow the recommended schedule.
Lecture 0 Introduction (Slide)
Lecture 1.1 Infinite Series (Video) (Slide)
Lecture 1.2 Approximation (Video) (Slide)
Lecture 1.3 Integration (Video) (Slide)
Lecture 1.4 Linear algebra (Video) (Slide)
Lecture 1.5 Combinatorics (Video) (Slide)
Lecture 2.1 Set theory (Video) (Slide)
Lecture 2.2 Probability space (Video) (Slide)
Lecture 2.3 Axioms of probability (Video) (Slide)
Lecture 2.4 Conditional probability (Video) (Slide)
Lecture 2.5 Independence (Video) (Slide)
Lecture 2.6 Bayes theorem (Video) (Slide)
Lecture 3.1 Random variables(Video) (Slide)
Lecture 3.2 Probability mass function (Video) (Slide)
Lecture 3.3 Cumulative distribution function (discrete case) (Video) (Slide)
Lecture 3.4 Expectation (Video) (Slide)
Lecture 3.5 Moments and variance (Video) (Slide)
Lecture 3.6 Bernoulli random variables (Video) (Slide)
Lecture 3.7 Binomial random variables (Video) (Slide)
Lecture 3.8 Geometric random variables (Video) (Slide)
Lecture 3.9 Poisson random variables (Video) (Slide)
Lecture 4.1 Probability density function (Video) (Slide)
Lecture 4.2 Expectation (continuous) (Video) (Slide)
Lecture 4.3 Cumulative distribution function (continuous) (Video) (Slide)
Lecture 4.4 Mean, mode, median (Video) (Slide)
Lecture 4.5 Uniform random variables (Video) (Slide)
Lecture 4.6 Exponential random variables (Video) (Slide)
Lecture 4.7 Gaussian random variables (Video) (Slide)
Lecture 4.8 Transformation of random variables (Video) (Slide)
Lecture 4.9 Generating random numbers (Video) (Slide)
Lecture 5.1 Joint PMF, PDF, and CDF (Video) (Slide)
Lecture 5.2 Joint expectation (Video) (Slide)
Lecture 5.3 Correlation and covariance (Video) (Slide)
Lecture 5.4 Conditional distributions (Video) (Slide)
Lecture 5.5 Conditional expectation (Video) (Slide)
Lecture 5.6 Sum of two random variables (Video) (Slide)
Lecture 5.7 Examples for sum of two random variables (Video) (Slide)
Lecture 6.1 Moment generating functions (Video) (Slide)
Lecture 6.2 Characteristic functions (Video) (Slide)
Lecture 10.1 Intro to random processes (Video) (Slide)
Lecture 10.2 Mean functions (Video) (Slide)
Lecture 10.3 Autocorrelation functions (Video) (Slide)
Lecture 10.4 Autocovariance functions, independent processes (Video) (Slide)
Lecture 10.5 Wide sense stationary processes (Video) (Slide)
Lecture 10.6 Power spectral density (Video) (Slide)
Lecture 10.7 Linear time invariant systems (Video) (Slide)
Lecture 10.8 Mean and autocorrelation through LTI systems (Video) (Slide)
Lecture 10.9 Cross-correlation through LTI systems (Video) (Slide)