ECE 302: Lecture 1.2 Approximation

Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Outline

- 1.1 Infinite Series
 - 1.1.1. Geometric Series
 - 1.1.2. Binomial Series
- 1.2 Approximations
 - 1.2.1. Taylor Approximation
 - 1.2.2. Exponential Series
 - 1.2.3. Logarithmic Approximation
- 1.3 Integration
 - 1.3.1. Odd and Even Functions
 - 1.3.2. Fundamental Theorem of Calculus
- 1.4 Linear Algebra (Optional)
 - 1.4.1. Inner Products (Optional)
 - 1.4.2. Matrix Calculus (Optional)
 - 1.4.3. Matrix Inversion (Optional)
- 1.5 Combinatorics
 - 1.5.1. Permutation
 - 1.5.2. Combination
Taylor Approximation

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with infinite derivatives. Let $a \in \mathbb{R}$ be a fixed constant. The Taylor approximation of f at $x = a$ is

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n,$$

where $f^{(n)}$ denotes the n-th order derivative of f.
Example 1

Find Taylor approximation of \(f(x) = \sin x \) at \(x = 0 \).

Solution. The Taylor approximation at \(x = 0 \) is

\[
f(x) \approx f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + \frac{f'''(0)}{3!}(x - 0)^3
\]

\[
= \sin(0) + (\cos 0)(x - 0) - \frac{\sin(0)}{2!}(x - 0)^2 - \frac{\cos(0)}{3!}(x - 0)^3
\]

\[
= x - \frac{x^3}{6}.
\]

We can expand further to higher orders, which yields

\[
f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots
\]
Example 2

Find Taylor approximation of $f(x) = \sin x$ at $x = 1/2$.

Solution. Taylor approximation at $x = \pi/2$ for $f(x) = \sin x$ is

$$f(x) = \sin \frac{\pi}{2} + \cos \frac{\pi}{2} \left(x - \frac{\pi}{2} \right) - \frac{\sin \frac{\pi}{2}}{2!} \left(x - \frac{\pi}{2} \right)^2 - \frac{\cos \frac{\pi}{2}}{3!} \left(x - \frac{\pi}{2} \right)^3$$

$$= 1 - \frac{1}{4} \left(x - \frac{\pi}{2} \right)^2 .$$
Outline

1.1 Infinite Series
 1.1.1. Geometric Series
 1.1.2. Binomial Series

1.2 Approximations
 1.2.1. Taylor Approximation
 1.2.2. Exponential Series
 1.2.3. Logarithmic Approximation

1.3 Integration
 1.3.1. Odd and Even Functions
 1.3.2. Fundamental Theorem of Calculus

1.4 Linear Algebra (Optional)
 1.4.1. Inner Products (Optional)
 1.4.2. Matrix Calculus (Optional)
 1.4.3. Matrix Inversion (Optional)

1.5 Combinatorics
 1.5.1. Permutation
 1.5.2. Combination
Exponential Series

Theorem

Let x be any real number. Then,

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \ldots = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$ \hspace{1cm} (1)

Proof. Let $f(x) = e^x$ for any x. Then, Taylor approximation at $x = 0$ is

$$f(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^2 + \ldots$$

$$= e^0 + e^0(x - 0) + \frac{e^0}{2!}(x - 0)^2 + \ldots$$

$$= 1 + x + \frac{x^2}{2} + \ldots = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

This result will be used in Poisson random variables.
Example 1

Evaluate the sum \(\sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} \).
Example 2

Substitute $x = j\theta$ where $j = \sqrt{-1}$. Find the Taylor approximation of sine and cosine.
Outline

1.1 Infinite Series
 - 1.1.1. Geometric Series
 - 1.1.2. Binomial Series

1.2 Approximations
 - 1.2.1. Taylor Approximation
 - 1.2.2. Exponential Series
 - 1.2.3. Logarithmic Approximation

1.3 Integration
 - 1.3.1. Odd and Even Functions
 - 1.3.2. Fundamental Theorem of Calculus

1.4 Linear Algebra (Optional)
 - 1.4.1. Inner Products (Optional)
 - 1.4.2. Matrix Calculus (Optional)
 - 1.4.3. Matrix Inversion (Optional)

1.5 Combinatorics
 - 1.5.1. Permutation
 - 1.5.2. Combination
Logarithmic Approximation

Theorem

Let $0 < x < 1$ be a constant. Then,

\[
\log(1 + x) = x - x^2 + O(x^3).
\]

(2)

Proof. Let $f(x) = \log(1 + x)$. Then, the derivatives of f are

\[
f'(x) = \frac{1}{1 + x}, \quad \text{and} \quad f''(x) = -\frac{1}{(1 + x)^2}.
\]

Taylor approximation at $x = 0$ gives

\[
f(x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2}(x - 0)^2 + O(x^3)
\]

\[= x - x^2 + O(x^3).
\]

This result will be used in Central Limit Theorem.
Example

Show that

$$\lim_{N \to \infty} \left(1 + \frac{s^2}{2N}\right)^N = e^{s^2/2}. \quad (3)$$
Questions?