ECE 302: Lecture A. 3 Autocorrelation Function

Prof Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PuRDUE

Everything you need to know about a random process

What is a random process?
A random process is a function indexed by a random key.

Autocorrelation function

The autocorrelation function of a random process $X(t)$ is

$$
R_{X}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] .
$$

Autocorrelation function takes two time instants t_{1} and t_{2}. Since $X\left(t_{1}\right)$ and $X\left(t_{2}\right)$ are two random variables, $R_{X}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]$ measures the correlation of these two random variables.

Example

Example 1: Let $A \sim$ Uniform $[0,1], X(t)=A \cos (2 \pi t)$. Find $R_{X}\left(t_{1}, t_{2}\right)$. Solution.

$$
\begin{aligned}
R_{X}\left(t_{1}, t_{2}\right) & =\mathbb{E}\left[A \cos \left(2 \pi t_{1}\right) A \cos \left(2 \pi t_{2}\right)\right] \\
& =\mathbb{E}\left[A^{2}\right] \cos \left(2 \pi t_{1}\right) \cos \left(2 \pi t_{2}\right) \\
& =\frac{1}{3} \cos \left(2 \pi t_{1}\right) \cos \left(2 \pi t_{2}\right) .
\end{aligned}
$$

Example

Example 2: Let $\Theta \sim$ Uniform $[-\pi, \pi], X(t)=\cos (\omega t+\Theta)$. Find $R_{X}\left(t_{1}, t_{2}\right)$.

Solution.

$$
\begin{aligned}
R_{X}\left(t_{1}, t_{2}\right) & =\mathbb{E}\left[\cos \left(\omega t_{1}+\Theta\right) \cos \left(\omega t_{2}+\Theta\right)\right] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos \left(\omega t_{1}+\theta\right) \cos \left(\omega t_{2}+\theta\right) d \theta \\
& \stackrel{(a)}{=} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{2}\left[\cos \left(\omega\left(t_{1}+t_{2}\right)+2 \theta\right)+\cos \left(\omega\left(t_{1}-t_{2}\right)\right)\right] d \theta \\
& =\frac{1}{2} \cos \left(\omega\left(t_{1}-t_{2}\right)\right)
\end{aligned}
$$

where in (a) we applied the trigonometric formula $\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]$.

Understanding auto-correlation function

How to understand the meaning of $\mathbb{E}\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]$?
$\mathbb{E}\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]$ is analogous to the correlation $\mathbb{E}[X Y]$

Example

Example 3. Let $X(t)=A \cos (2 \pi t)$. Find $\mathbb{E}[X(0) X(0.5)]$.
Solution. If $X(t)=A \cos (2 \pi t)$, then

$$
\begin{aligned}
X(0) & =A \cos (0)=A \\
X(0.5) & =A \cos (\pi)=-A .
\end{aligned}
$$

When you have two random variables, you can talk about their correlations. Using this example, we can show that

$$
\mathbb{E}[X(0) X(0.5)]=-\mathbb{E}[A \cdot A]=-\mathbb{E}\left[A^{2}\right]=-\frac{1}{3}
$$

Example

You have two PDFs:
$f_{X(0)}(x)=\left\{\begin{array}{ll}1, & 0 \leq x \leq 1, \\ 0, & \text { otherwise }\end{array} \quad\right.$ and $\quad f_{X(0.5)}(x)= \begin{cases}1, & -1 \leq x \leq 0 \\ 0, & \text { otherwise }\end{cases}$

Figure: The autocorrelation between $X(0)$ and $X(0.5)$ should be regarded as the correlation between two random variables. Each random variable has its states, and its probabilities.

Example

Example 4: Let $A \sim U n i f o r m[0,1], X(t)=A \cos (2 \pi t)$. Find $R_{X}(0,0.5)$, and draw $R_{X}\left(t_{1}, t_{2}\right)$.

Solution. In the previous example, we know that

$$
R_{X}\left(t_{1}, t_{2}\right)=\frac{1}{3} \cos \left(2 \pi t_{1}\right) \cos \left(2 \pi t_{2}\right)
$$

Therefore, $R_{X}(0,0.5)=\frac{1}{3} \cos (2 \pi 0) \cos (2 \pi 0.5)=-\frac{1}{3}$ which is the same as if we compute it from the first principle.

Visualizing the autocorrelation function

Figure: The autocorrelation function $R_{X}\left(t_{1}, t_{2}\right)=\frac{1}{3} \cos \left(2 \pi t_{1}\right) \cos \left(2 \pi t_{2}\right)$.

Example

Example 5: Let $\Theta \sim$ Uniform $[-\pi, \pi], X(t)=\cos (\omega t+\Theta)$. Draw the auto-correlation function $R_{X}\left(t_{1}, t_{2}\right)$.

Solution. From the previous example we know that

$$
R_{X}\left(t_{1}, t_{2}\right)=\frac{1}{2} \cos \left(\omega\left(t_{1}-t_{2}\right)\right)
$$

Figure: The autocorrelation function $R_{X}\left(t_{1}, t_{2}\right)=\frac{1}{2} \cos \left(\omega\left(t_{1}-t_{2}\right)\right)$.

Summary

The autocorrelation function of a random process $X(t)$ is

$$
R_{X}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[X\left(t_{1}\right) X\left(t_{2}\right)\right] .
$$

- $R_{X}\left(t_{1}, t_{2}\right)$ is a 2 D function
- It measures the correlation between two random variables $X\left(t_{1}\right)$ and $X\left(t_{2}\right)$
- Same meaning as $\mathbb{E}[X Y]$

Questions?

