ECE 302: Lecture A.3 Autocorrelation Function

Prof Stanley Chan

School of Electrical and Computer Engineering Purdue University

C Stanley Chan 2020. All Rights Reserved

Everything you need to know about a random process

What is a random process?

A random process is a function indexed by a random key.

Autocorrelation function

The **autocorrelation function** of a random process X(t) is

$$R_X(t_1,t_2)=\mathbb{E}\left[X(t_1)X(t_2)\right].$$

Autocorrelation function takes two time instants t_1 and t_2 . Since $X(t_1)$ and $X(t_2)$ are two random variables, $R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)]$ measures the correlation of these two random variables.

Example 1: Let $A \sim \text{Uniform}[0, 1]$, $X(t) = A\cos(2\pi t)$. Find $R_X(t_1, t_2)$. Solution.

$$egin{aligned} &R_X(t_1,t_2) = \mathbb{E}\left[A\cos(2\pi t_1)A\cos(2\pi t_2)
ight] \ &= \mathbb{E}[A^2]\cos(2\pi t_1)\cos(2\pi t_2) \ &= rac{1}{3}\cos(2\pi t_1)\cos(2\pi t_2). \end{aligned}$$

Example 2: Let $\Theta \sim \text{Uniform}[-\pi, \pi]$, $X(t) = \cos(\omega t + \Theta)$. Find $R_X(t_1, t_2)$.

Solution.

$$egin{aligned} &R_X(t_1,t_2) = \mathbb{E}\left[\cos(\omega t_1+\Theta)\cos(\omega t_2+\Theta)
ight] \ &= rac{1}{2\pi}\int_{-\pi}^{\pi}\cos(\omega t_1+ heta)\cos(\omega t_2+ heta)d heta \ &\stackrel{(a)}{=}rac{1}{2\pi}\int_{-\pi}^{\pi}rac{1}{2}iggl[\cos(\omega(t_1+t_2)+2 heta)+\cos(\omega(t_1-t_2))iggr]d heta, \ &= rac{1}{2}\cosiggl(\omega(t_1-t_2)iggr), \end{aligned}$$

where in (a) we applied the trigonometric formula $\cos A \cos B = \frac{1}{2} [\cos(A + B) + \cos(A - B)].$

Understanding auto-correlation function

How to understand the meaning of $\mathbb{E}[X(t_1)X(t_2)]$?

 $\mathbb{E}\left[X(t_1)X(t_2)
ight]$ is analogous to the correlation $\mathbb{E}[XY]$

Example 3. Let $X(t) = A\cos(2\pi t)$. Find $\mathbb{E}[X(0)X(0.5)]$.

Solution. If $X(t) = A\cos(2\pi t)$, then

$$X(0) = A\cos(0) = A,$$

 $X(0.5) = A\cos(\pi) = -A.$

When you have two random variables, you can talk about their correlations. Using this example, we can show that

$$\mathbb{E}[X(0)X(0.5)] = -\mathbb{E}[A \cdot A] = -\mathbb{E}[A^2] = -\frac{1}{3}.$$

You have two PDFs:

Figure: The autocorrelation between X(0) and X(0.5) should be regarded as the correlation between two random variables. Each random variable has its states, and its probabilities.

Example 4: Let $A \sim \text{Uniform}[0, 1]$, $X(t) = A\cos(2\pi t)$. Find $R_X(0, 0.5)$, and draw $R_X(t_1, t_2)$.

Solution. In the previous example, we know that

$$R_X(t_1, t_2) = \frac{1}{3}\cos(2\pi t_1)\cos(2\pi t_2).$$

Therefore, $R_X(0, 0.5) = \frac{1}{3}\cos(2\pi 0)\cos(2\pi 0.5) = -\frac{1}{3}$ which is the same as if we compute it from the first principle.

Visualizing the autocorrelation function

Figure: The autocorrelation function $R_X(t_1, t_2) = \frac{1}{3}\cos(2\pi t_1)\cos(2\pi t_2)$.

Example 5: Let $\Theta \sim \text{Uniform}[-\pi, \pi]$, $X(t) = \cos(\omega t + \Theta)$. Draw the auto-correlation function $R_X(t_1, t_2)$.

Solution. From the previous example we know that

$$R_X(t_1,t_2)=\frac{1}{2}\cos\Big(\omega(t_1-t_2)\Big).$$

The **autocorrelation function** of a random process X(t) is

$$R_X(t_1,t_2)=\mathbb{E}\left[X(t_1)X(t_2)\right].$$

- $R_X(t_1, t_2)$ is a 2D function
- It measures the correlation between two random variables $X(t_1)$ and $X(t_2)$
- Same meaning as $\mathbb{E}[XY]$

Questions?