ECE 302: Lecture 3.6 Bernoulli Random Variables

Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University
The random variable of flipping a coin

- How can this ever be interesting?
- It can be used to model randomized algorithm.
- It can be used to model social networks.
Outline

- 3.1 Random variables
- 3.2 Probability mass functions (PMF)
- 3.3 Cumulative distribution functions (discrete case)
- 3.4 Expectation
- 3.5 Moments and variance
- 3.6 Bernoulli random variables
 - Definition of a Bernoulli random variable
 - Expectation, Variance
 - Application 1: Modeling randomized algorithms
 - Application 2: Modeling social networks
- 3.7 Binomial random variables
- 3.8 Geometric random variables
- 3.9 Poisson random variables
Bernoulli Random Variable

Definition
Let X be a Bernoulli random variable. Then, the PMF of X is

$$p_X(0) = 1 - p, \quad p_X(1) = p,$$

where $0 < p < 1$ is called the Bernoulli parameter. We write

$$X \sim \text{Bernoulli}(p)$$

to say that X is drawn from a Bernoulli distribution with a parameter p.

Example. Coin flip.
Mean, Variance

Proposition

If $X \sim \text{Bernoulli}(p)$, then

$$\mathbb{E}[X] = p,$$
$$\mathbb{E}[X^2] = p,$$
$$\text{Var}[X] = p(1 - p).$$
Analysis of the variance

When will the variance of a Bernoulli random variable be maximized?

- When $p = 0$?
- When $p = 1$?
- When $p = \frac{1}{2}$?
Rademacher random variable

- Bernoulli: 0 and 1
- Rademacher: +1 and -1

PMF of Rademacher is

\[p_X(-1) = \frac{1}{2}, \quad \text{and} \quad p_X(+1) = \frac{1}{2}. \]

You can show that following result:

Proposition

If \(X \) is a Rademacher random variable, then \((X + 1)/2 \sim \text{Bernoulli}(1/2)\). Conversely if \(Y \sim \text{Bernoulli}(1/2) \) then \(2Y - 1 \) is Rademacher.
Application 1: Modeling randomized algorithms

Consider a large linear system:

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_N \\
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1N} \\
\vdots & \vdots & \ddots & \vdots \\
a_{M1} & a_{M2} & \cdots & a_{MN} \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_N \\
\end{bmatrix}
\]

where \(M \) and \(N \) are very large.

Example.

- Large network analysis (million-node network)
- Large-scale inverse problem (giga-pixel deconvolution)
- Large-scale routing (air traffic control)
- Large-scale decomposition (genome analysis)
Application 1: Modeling randomized algorithms

Brute-force computation:

\[y_i = \sum_{j=1}^{N} a_{ij} x_j. \]

Randomized computation: Let \(I_j \sim \text{Bernoulli}(p_j) \). Then,

\[\hat{y}_i = \sum_{j=1}^{N} a_{ij} x_j I_j / p_j, \]

- If \(I_j = 0 \), then you can skip that entry.
Application 1: Modeling randomized algorithms

- The compensation by p_j is to ensure $\mathbb{E}[\hat{y}_i] = y_j$. How?

We can prove that with extremely high probability, the deviation between \hat{y}_i and y_j is very small.

Application 2: Modeling social networks

Erdos-Renyi Graph
- A very famous (and simple) model for large networks.
- Is used nowadays to study network structures, e.g. Facebook, Google.

Application 2: Modeling social networks

Erdos-Renyi Graph says:

\[A_{ij} \sim \text{Bernoulli}(p), \quad (1) \]

Figure: Erdős-Rényi graph with different parameters \(p = 0.3, 0.5, 0.7, 0.9. \)
Questions?