ECE 302: Lecture 3.4 Expectation

Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Purdue
UNIVERSITY

Long long time ago, in a galaxy far far away

Some kids on another planet took a mid term exam!
Here were their scores...

The teacher felt that the scores are too low, and decided to give 10 points to everyone.

- Will the mean change?
- Will the standard deviation change?
- If the letter grades are curved, will this change the grades?

Outline

- 3.1 Random variables
- 3.2 Probability mass functions (PMF)
- 3.3 Cumulative distribution functions (discrete case)
- 3.4 Expectation
- 3.4.1 Understanding expectation
- 3.4.2 Properties of expectation
- 3.5 Moments and variance
- 3.6 Bernoulli random variables
- 3.7 Binomial random variables
- 3.8 Geometric random variables
- 3.9 Poisson random variables

Definition of expectation

Definition (Expectation)

The expectation of a random variable X is

$$
\begin{equation*}
\mathbb{E}[X]=\sum_{x \in \Omega(X)} x p_{X}(x) \tag{1}
\end{equation*}
$$

Interpretation: Weighted average.

$$
\mathbb{E}[X]=\underbrace{\sum_{x \in \Omega(X)}}_{\text {sum over all states }}
$$

Here is a better way to visualize

Expectation = "average"

If your dataset is partitioned into several bins, then expectation $=$ "average":
average $=\underbrace{\sum_{k=1}^{K}}_{\text {sum of all states }} \underbrace{\text { value } x_{k}}_{\text {a state } X \text { takes }} \times \underbrace{\frac{\text { number of samples with value } x_{k}}{N}}_{\text {the percentage }}$,

Expectation = "average"?

No. Expectation is computed from PMF. Average is computed from histogram.

(a) $N=100$
(b) $N=1000$

(c) $N=10000$

(d) PMF

Figure: Histogram and PMF, when throwing a fair dice N times. As N increases, the histograms are becoming more like the PMF.

Examples

Example 1. Let X be a random variable with PMF $p_{X}(0)=1 / 4$, $p_{X}(1)=1 / 2$ and $p_{X}(2)=1 / 4$. Find $\mathbb{E}[X]$.

Example 2. Flip an unfair coin, where the probability of getting a head is $\frac{3}{4}$. Let X be a random variable such that $X=1$ means getting a head. Find $\mathbb{E}[X]$.

Examples

Example 3. Let X be a random variable with PMF

$$
p_{X}(k)=\frac{c}{2^{k}}, \quad k=1,2, \ldots
$$

(a) Find c
(b) Find $\mathbb{E}[X]$

Examples

Example 4. Consider a game. Flip a coin 3 times. Reward:

- \$1 if there are 2 Heads
- \$8 if there are 3 Heads
- \$0 if there are 0 or 1 Head

The cost to enter the game is $\$ 1.5$. On average what is the net gain?

True Mean and Sample Mean

True Mean $\mathbb{E}[X]$

- A statistical property of a random variable.
- A deterministic number.
- Often unknown, or is the center question of estimation.
- You have to know X in order to find $\mathbb{E}[X]$; Top down.

Sample Mean \bar{X}

- A numerical value. Calculated from data.
- Itself is a random variable.
- It has uncertainty.
- Uncertainty reduces as more samples are used.
- We use sample mean to estimate the true mean.
- You do not need to know X in order to find \bar{X}; Bottom up.

Existence of expectation

Does expectation always exist?
No.
Example. Consider a random variable X with the following PMF:

$$
p_{X}(k)=\frac{6}{\pi^{2} k^{2}}, \quad k=1,2, \ldots
$$

Absolutely summable

Definition

A discrete random variable X is absolutely summable if

$$
\mathbb{E}[|X|] \stackrel{\text { def }}{=} \sum_{x \in X(\Omega)}|x| p_{X}(x)<\infty
$$

Only those absolutely summable random variables have expectations!

Questions?

