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Outline

1.1 Infinite Series
1.1.1. Geometric Series
1.1.2. Binomial Series

1.2 Approximations
1.2.1. Taylor Approximation
1.2.2. Exponential Series
1.2.3. Logarithmic Approximation

1.3 Integration
1.3.1. Odd and Even Functions
1.3.2. Fundamental Theorem of Calculus

1.4 Linear Algebra (Optional)
1.4.1. Inner Products (Optional)
1.4.2. Matrix Calculus (Optional)
1.4.3. Matrix Inversion (Optional)

1.5 Combinatorics
1.5.1. Permutation
1.5.2. Combination
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Integration

How many ways to do integration?

Most of you know these two tricks:

Substitution

Integration by part

There are two more tricks:

Odd and even functions.

Integrating a probability density function = 1. (We will talk about
this later)
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Even and Odd Functions

Definition

A function f : R → R is even if for any x ∈ R,

f (x) = f (−x), (1)

and f is odd if
f (x) = −f (−x), (2)

Even function: ∫ a

−a
f (x)dx = 2

∫ a

0
f (x)dx .

Odd function: ∫ a

−a
f (x)dx = 0.
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Example
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(a) Even function (b) Odd function

Figure: An even function and an odd function.
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Example 1

Find ∫ 1

−1
x2 − 0.4x4dx
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Example 2

Find ∫ 1

−1
xe−

x2

2 dx
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Fundamental theorem of calculus

Theorem (Fundamental Theorem of Calculus)

Let f : [a, b] → R be a continuous function defined on a closed interval
[a, b]. Then,

f (x) =
d

dx

∫ x

a
f (t)dt, (3)

for any x ∈ (a, b).

Proof. See Lecture note.

This result will be useful when discussing cumulative distribution
function.
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Corollary

Corollary

Let f : [a, b] → R be a continuous function defined on a closed interval
[a, b]. Let g : R → [a, b] be a continuously differentiable function. Then,

d

dx

∫ g(x)

a
f (t)dt = g ′(x) · f (g(x)), (4)

for any x ∈ (a, b).

Proof.
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Example

Evaluate the integral

d

dx

∫ x−µ

0

1√
2πσ2

exp

{
− t2

2σ2

}
dt.

This result will be useful when discussing Gaussian random variables.
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Questions?
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