ECE 302: Lecture 2.5 Independence

Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University
2.1 Set theory
2.2 Probability space
2.3 Axioms of probability
2.4 Conditional probability
2.5 Independence
 2.5.1 What is independent?
 2.5.2 Examples
2.6 Bayes theorem
The game of throw dices — easy case

Throw a dice twice. Let

\[A = \{1\text{st dice is 3}\} \quad \text{and} \quad B = \{2\text{nd dice is 4}\}. \]

Are \(A \) and \(B \) independent?

- What is independence?
- One event does not affect the other event!
- Are \(A \) and \(B \) independent then?
The game of throw dices — hard case

Throw a dice twice. Let

\[A = \{ \text{1st dice is 1} \} \quad \text{and} \quad B = \{ \text{sum is 7} \}. \]

Are \(A \) and \(B \) independent?

- Not as trivial ...
- If you know the sum is 7, then the pair has to be \((1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\).
- The chance of getting first dice = 1 is still 1/6. It has been not been changed by \(B \).
Definition

Two events A and B are statistically **independent** if

Disjoint VS Independent.
Independence Via Conditional Probability

- Recall that $\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$.
- If A and B are independent, then $\mathbb{P}[A \cap B] = \mathbb{P}[A] \mathbb{P}[B]$

Therefore,

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[A] \mathbb{P}[B]}{\mathbb{P}[B]} = \mathbb{P}[A].$$

Interpretation.

Pictorial Illustration. Conditional probability

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \frac{\mathbb{P}[A]}{\Omega} = \mathbb{P}[A] = \text{ratio of } A \text{ in } \Omega$$
Outline

- 2.1 Set theory
- 2.2 Probability space
- 2.3 Axioms of probability
- 2.4 Conditional probability
- 2.5 Independence
 - 2.5.1 What is independent?
 - 2.5.2 Examples
- 2.6 Bayes theorem
Example 1

Example 1. Throw a dice twice. Let

\[A = \{ \text{1st dice is 3} \} \quad \text{and} \quad B = \{ \text{2nd dice is 4} \}. \]

Are \(A \) and \(B \) independent?
Example 2. Throw a dice twice. Let

\[A = \{ \text{1st dice is 1} \} \quad \text{and} \quad B = \{ \text{sum is 7} \}. \]

Are \(A \) and \(B \) independent?
Example 2(b)

How about we change the problem in this way?

\[A = \{1st \text{ dice is 1}\} \quad \text{and} \quad B = \{\text{sum is 8}\}. \]

Are \(A \) and \(B \) independent?
Example 3. Throw a dice twice. Let
\[A = \{\text{1st dice is 2}\} \quad \text{and} \quad B = \{\text{sum is 8}\}. \]
Are \(A \) and \(B \) independent?
Example 3 (continue)

Interpreting the answer for Example 3:

\[A = \{ \text{1st dice is 2} \} \quad \text{and} \quad B = \{ \text{sum is 8} \}. \]

- Think about \(P[A|B] \).
- If you know the sum is 8, then the pair has to be (2,6), (3,5), (4,4), (5,3), (6,2).
- The chance of getting first dice = 2 is no longer 1/6. It has been changed by \(B \).
- So dependent.
Example 4. Throw a dice twice. Let

\[A = \{ \text{max is 2} \} \quad \text{and} \quad B = \{ \text{min is 2} \}. \]

Are \(A \) and \(B \) independent?
Why border independence?

dependent data

independent data
Questions?