ECE 302: Lecture 2.3 Axioms of Probability

Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Outline

- 2.1 Set theory
- 2.2 Probability space
- 2.3 Axioms of probability
 - 2.3.1 The three axioms
 - 2.3.2 Corollaries derived from the axioms
 - 2.3.3 Examples
- 2.4 Conditional probability
- 2.5 Independence
- 2.6 Bayes theorem
Probability Law

Definition

A **probability law** is a function $\mathbb{P} : \mathcal{F} \rightarrow [0, 1]$ that maps an event A to a real number in $[0, 1]$. The function must satisfy three axioms known as **Probability Axioms**.

I. **Non-negativity:**

II. **Normalization:**
III. Additivity:

For any disjoint subsets \(\{A_1, A_2, \ldots \} \), it holds that

\[
\mathbb{P} \left[\bigcup_{n=1}^{\infty} A_n \right] = \sum_{n=1}^{\infty} \mathbb{P}[A_n].
\]
If A and B are disjoint, then

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B],$$

(1)
Outline

- 2.1 Set theory
- 2.2 Probability space
- 2.3 Axioms of probability
 - 2.3.1 The three axioms
 - 2.3.2 Corollaries derived from the axioms
 - 2.3.3 Examples
- 2.4 Conditional probability
- 2.5 Independence
- 2.6 Bayes theorem
Properties of Probability

1. $\mathbb{P}[A^c] = 1 - \mathbb{P}[A]$.

2. For any $A \subseteq \Omega$, $\mathbb{P}[A] \leq 1$.

3. $\mathbb{P}[\emptyset] = 0$.
Properties of Probability

4. For any A and B,

$$P[A \cup B] = P[A] + P[B] - P[A \cap B].$$
Properties of Probability

Proof.
(Union Bound) For any A and B,

$$P[A \cup B] \leq P[A] + P[B].$$
Properties of Probability

If \(A \subseteq B \), then \(\mathbb{P}[A] \leq \mathbb{P}[B] \)

Example. \(A = \{ t \leq 5 \} \), and \(B = \{ t \leq 10 \} \), then \(\mathbb{P}[A] \leq \mathbb{P}[B] \).
Outline

2.1 Set theory
2.2 Probability space
2.3 Axioms of probability
 2.3.1 The three axioms
 2.3.2 Corollaries derived from the axioms
 2.3.3 Examples
2.4 Conditional probability
2.5 Independence
2.6 Bayes theorem
Example

Let the events A and B have $P[A] = x$, $P[B] = y$ and $P[A \cup B] = z$. Find the following probabilities.

(a) $P[A \cap B]$

(b) $P[A^c \cap B^c]$
Example

(c) $\mathbb{P}[A^c \cup B^c]$

(d) $\mathbb{P}[A \cap B^c]$
Questions?