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Bottleneck in Supervised Learning

e Labeling data is time-consuming and expensive

e Computer vision (and many other machine learning tasks) is not perfect and
needs "teachers" to provide correct answers.

e Labeling requires human effort, slow and expensive

e Acquiring "rare" events is difficult (or impossible)

person

ImageNet DAVIS: Densely Annotated VIideo Segmentation
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DatasetGAN: Efficient Labeled Data Factory with Minimal
Human Effort (CVPR 2021)

"Labeling a complex scene with 50 objects can take anywhere
between 30 to 90 minutes"
(for semantic segmentation)

30 frames / second x 60 second/minute x 90 minutes = 162,000
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Crowdsourcing Annotations for Visual Object

Detection (Conference on Artificial Intelligence 2012)

Desired outcomes: objects’' bounding boxes Iin images
e Quality: tight bounding boxes
e Coverage: every object is labeled (for positive and negative

examples)
Challenge: how to know the labels are correct and high
quality?
e How to obtain trustable results from crowds?
e What is the right incentive to the crowds?
e '"chicken-egg" problem:

o no labels and no truth

o no truth and cannot verify

o cannot verify and no trusted label
Yung-Hsiang Lu, Purdue University "bOttle" category 6




Crowdsourcing for Labeling
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Labeling Tools

Computer Vision Annotation Tool (CVAT)
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Draw-Verification Procedure

30 second/image x 1M image x 3
people

= 25,000 hours

= 1,042 days

If person x 2 hours/day é‘;g
= 520 days i
Each person draws only one H

. - Ml Coverage
bounding box &‘"'ﬂ" wesen

Yung-Hsiang Lu, Purdue University

10



Procedure for Crowdsourced Labeling

Drawing Task:
1. Include all visible parts and draw as tightly as possible.

2. If there are multiple instances, include only ONE (any one ).
3. Draw on a new instance if an instance has a bounding box.
4. If every instance already has a bounding box, check the check box.

Verification Task:
1. A bounding box must include an instance of the required object.

2. A bounding box must include all visible parts and be as tight as possible.
3. If there are multiple instances, a good bounding box must include only ONE (

any one )
Before given a real labeling task, a participant must pass a test.

Yung-Hsiang Lu, Purdue University
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20,000 categories

14 million images

97.9% correct bounding boxes

common errors: bounding boxes too small
88 second pe

Yung-Hsiang Lu, Purdue University
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balloon
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Research Environments for Machine Learning

social networks + photo hosting services = easy to collect
data

web-based human interaction = crowdsourcing
crowdsourcing framework = distribute work

"micro payment” = monetary incentive

select the right tasks = "ordinary" people can contribute
well-defined problems = crowd can participate

Yung-Hsiang Lu, Purdue University
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Synthesized Data + Labels
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Vision and Graphics are Reverse Problems

3D model + meaning

computer graphics I | computer vision

image or video

Computer Graphics: also called CG, animation, special effects ...

Yung-Hsiang Lu, Purdue University
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Computer Graphics and Vision

Graphics

Meaning ' Y Visual Data

Objects: Airplane, Human, Vehicle, Tree V|S|on

Season, Time, environment: Autumn,
football game

Actions: Walking, Running, Flying

Relationship of objects: Above, Fighting

https://brianmmurray.wordpress.com/2013/02/28/feeling-anxious-spend-time-with-nature/
https://www.jconline.com/picture-gallery/sports/2020/10/31/zander-horvath-look-purdue-football-running-back/6103553002/
https://www.rogerebert.com/reviews/ip-man-4-the-finale-movie-review-2019

Yung-Hsiang Lu, Purdue University
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Why to synthesize data?

rare events (disasters, accidents, endangered species)

dangerous environments (fire, pedestrians jumping into

traffic)

seasonal delays (evaluate vision's responses to winter)

augmented reality

flexible viewing angles

scale up to interactions of multiple objects

repeatable evaluation

additional information: depth, speed, weight and volume

Yung-Hsiang Lu, Purdue University
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Sim4CV: A Photo-Realistic Simulator for Computer

Vision Applications International Journal of Computer Vision (2018)
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Factors to consider in synthesized data

Photo-realistic or not

Physics (inertia, gravity, turbulence, mass, size, elasticity)
Weather (wind, rain, fog, sun, shadow)

Time

Power and energy

Surface properties (e.g., reflection)

Human behavior

Interaction with physical components

Yung-Hsiang Lu, Purdue University
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Applications

Yung-Hsiang Lu, Purdue University




Photorealistic Image Synthesis for Object Instance

Detection IEEE International Conference on Image Processing 2019

Physics-based modeling:
e scattering

e refraction and reflection
o diffuse

e usually very slow

Yung-Hsiang Lu, Purdue University
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Virtual Worlds as Proxy for

Multi-Object Tracking Analysis
Adrien Gaidon, Qiao Wang, Yohann Cabon, Eleonora Vig

CVPR 2016

Yung-Hsiang Lu, Purdue University
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Is this real or virtual?

Is this real or virtual?

Segmentation and Depth

Yung-Hsiang Lu, Purdue University
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Challenge in Data Labeling (for Video)

volume of data (30 frames per second, multiple objects)
movement

occlusion

diversity

Meanwhile, synthesizing data also has many challenges:

e photorealism

e time-consuming to generate high-quality data

e Playing video games need human players

Yung-Hsiang Lu, Purdue University
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Generate Virtual World

1.
. clone this real-world data into a virtual world

acquire real-world data as a starting point for calibration

generate synthetic sequences with different weather
conditions

create ground truth annotations

evaluate the “usefulness” of the synthetic data

Yung-Hsiang Lu, Purdue University 28



Figure 2: Frames from 5 real KITTI videos (left, sequences 1, 2,
6. 18, 20 from top to bottom) and rendered virtual clones (right).

Yung-Hsiang Lu, Purdue University
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Figure 3: Simulated conditions. From top left to bottom right:
clone, camera rotated to the right by 15°, to the left by 15°, “morn-
ing”’ and “sunset” times of day, overcast weather, fog, and rain.

Yung-Hsiang Lu, Purdue University
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Figure 5: Predicted tracks on matching frames of two original videos (top) and their synthetic clones (bottom) for both DP-MCF (left)
and MDP (right). Note the visual similarity of both the scenes and the tracks. Most differences are on occluded, small, or truncated objects,

31

Yung-Hsiang Lu, Purdue University



Playing for Data: Ground
Truth from Computer Games

Stephan R. Richter, Vibhav Vineet, Stefan Roth, Vladlen Koltun
ECCV 2016

Yung-Hsiang Lu, Purdue University



Capture Graphics Commands in Game

open-source games lack details like commercial games
source code of commercial game engine unavailable
create pixel-wise semantic labels

record and reproduce rendering commands at operating
systems

method: intercept communication between software and
hardware

o identify relevant function calls

o identify hardware resources

o format for annotation

25,000 images, 49 hours for labeling, about 7 seconds / image

Yung-Hsiang Lu, Purdue University
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Fig. 4. Number of annotated pixels per class in our dataset. Note the logarithmic scale.
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#pixels  annotation density  annotation time  annotation speed
[107] (%] [sec/image] [pixels/sec]
GTAS 50.15 98.3 7 279,540
Cityscapes (fine) [11] 9.43 97.1 5400 349
Cityscapes (coarse) [11]  26.0 67.5 420 3095
CamVid [8] 0.62 96.2 3,600 246
KITTI [39] 0.07 98.4 N/A N/A

Yung-Hsiang Lu, Purdue University
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