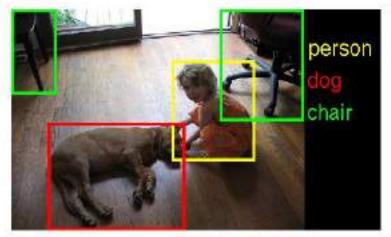
Computer Vision for Embedded Systems


Yung-Hsiang Lu Purdue University yunglu@purdue.edu



Bottleneck in Supervised Learning

- Labeling data is time-consuming and expensive
- Computer vision (and many other machine learning tasks) is not perfect and needs "teachers" to provide correct answers.
- Labeling requires human effort, slow and expensive
- Acquiring "rare" events is difficult (or impossible)

ImageNet

DAVIS: Densely Annotated VIdeo Segmentation

DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort (CVPR 2021)

"Labeling a complex scene with 50 objects can take anywhere between 30 to 90 minutes" (for semantic segmentation)

30 frames / second x 60 second/minute x 90 minutes = 162,000

A Export

Top Data labeling Companies

Top ranked companies for keyword search: Data labeling

Scale

- In Private Company
- E Founded 2016
- Q LISA

Dur APTprovides access to human-powered data for hundreds of use cases. After senting us your data via APT call, our platform through a combination of human work and review, smart tools, statistical confidence checks and machine learning checks...

https://scale.com/

Docugami

- In Private Company
- ff Pounded 2017
- \$ 15A

Pounded in 2018, Docugami creates Saas solutions that harness a wide range of artificial intelligence techniques, including natural language processing, image recognition, declarative markup, and other approaches, to enable businesses of all statu...

http://www.docugami.com/

CrowdAl

- In Private Company
- ttl Founded 2016
- V 1.6A

8

At Crowdle, we provide scalable, high-quality image anostation, we combine machine learning, computer vision and human intelligence to maximize value for selfdming car, automated imme and satellite image companies. Loaders in data insights, our.

http://crawdwi.com

icoMetrix

- The Private Company
- E Pounded 2011
- Belgium

Icometria provides chinicans with standardized measurements on their patients' brain MR scans to improve personalized care of people with a neurological disorder accentric was founded in 2011 by Disk Loodos & With Van Hocke as a upon off of the...

https://icometrix.com/

Falkonry

- In Private Company
- E Founded 2012
- 9 US4

Nationary separates the data into unique patterns in your data and presents them as color hands. It looks for time trends, multi-variate correlations across signals, and noise. Following automatically presents patterns for lobeling, just like photo...

http://feikonry.com/

Heex Technologies

- In Private Company
- E Pounded 2019
- 9 Prante

week provides a data management solution that enables relevant data to move faster and more reliably from whiches to those who need it the most via the doual. Thereis the the pre-set triggers, the data generated is drettly dassified and sortiad on...

https://heex.io/

Snorkel Al

- a Private Company
- E Founded 2019
- Q. USA

The only Al platform that lets you label data programmatcally, than modes efficiently, imprive performance iteratively, and depiny applications rouldly instead of bend-labeling millions of data-points by hand, automotically label wint amounts of ...

https://www.unorkel.al/

SuperAnnotate

- In Private Company
- Pounded 2018
- Q LESA

The fastest annotation platform and services for training ALA complete set of solutions for image and video annotation and an annotation service with integrated toolog, on-demond narrow experitive in version fields, and a custom neural network...

https://www.superannetate.com/

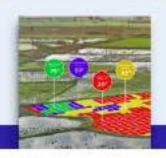
https://www.ventureradar.com/keyword/Data%20labeling

Medical Diagnostics

Artificial intelligence is transforming healthcare by allowing practitioners to use big data to identify and treat diseases.

Retail Automation

- -----


Retail Automation

As customer expectations evolve, companies are turning to AI to make the retail experience more convenient and customized.

https://info.cloudfactory.com/

- deudlactory

Precision Agriculture

Technology holds great promise for solving the many challenges and inefficiencies in the production and distribution of food.

Crowdsourcing Annotations for Visual Object Detection (Conference on Artificial Intelligence 2012)

Desired outcomes: objects' bounding boxes in images

- Quality: tight bounding boxes
- Coverage: every object is labeled (for positive and negative examples)

Challenge: how to know the labels are correct and high quality?

- How to obtain trustable results from crowds?
- What is the right incentive to the crowds?
- "chicken-egg" problem:
 - \circ $\,$ no labels and no truth
 - no truth and cannot verify
 - \circ cannot verify and no trusted label

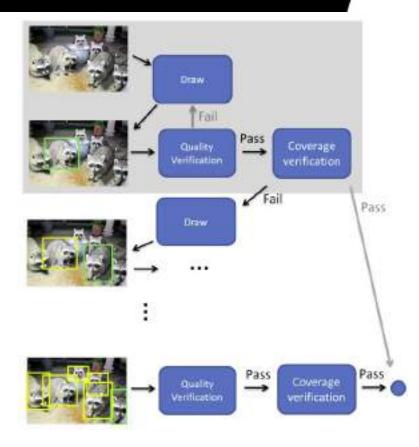
6



Crowdsourcing for Labeling

Labeling Tools

Computer Vision Annotation Tool (CVAT)


Yung-Hsiang Lu, Purdue University

Draw-Verification Procedure

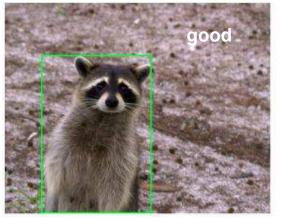
- 30 second/image x 1M image x 3 people
- = 25,000 hours
- = 1,042 days
- If person x 2 hours/day ⇒ 520 days

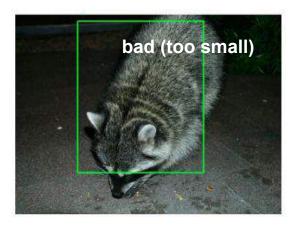
Each person draws only one bounding box

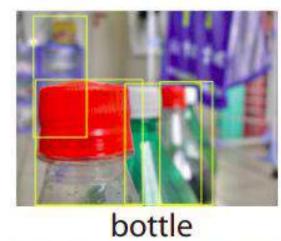
Procedure for Crowdsourced Labeling

Drawing Task:

- 1. Include all visible parts and draw as tightly as possible.
- 2. If there are multiple instances, include only ONE (any one).
- 3. Draw on a new instance if an instance has a bounding box.
- 4. If every instance already has a bounding box, check the check box.

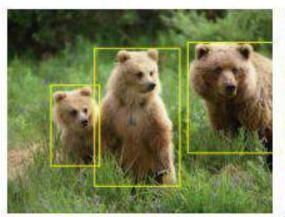

Verification Task:


- 1. A bounding box must include an instance of the required object.
- 2. A bounding box must include all visible parts and be as tight as possible.
- 3. If there are multiple instances, a good bounding box must include only ONE (any one)

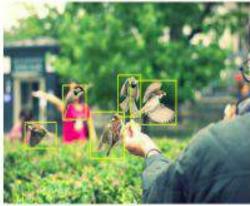

Before given a real labeling task, a participant must pass a test.

Experiments

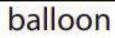
- 20,000 categories
- 14 million images
- 97.9% correct bounding boxes
- common errors: bounding boxes too small
- 88 second per bounding box





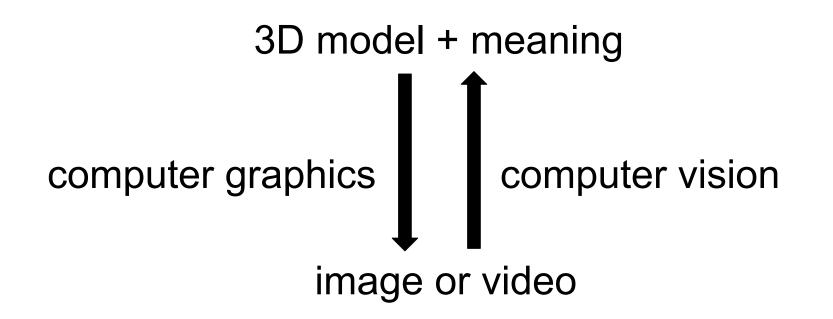

bed

bear



bird

bear



Research Environments for Machine Learning

- social networks + photo hosting services ⇒ easy to collect data
- web-based human interaction \Rightarrow crowdsourcing
- crowdsourcing framework ⇒ distribute work
- "micro payment" ⇒ monetary incentive
- select the right tasks \Rightarrow "ordinary" people can contribute
- well-defined problems \Rightarrow crowd can participate

Synthesized Data + Labels

Vision and Graphics are Reverse Problems

Computer Graphics: also called CG, animation, special effects ... in movies

Computer Graphics and Vision

Graphics				
Meaning		Visual Data		
Objects: Airplane, Human, Vehicle, Tree	Vision			
Season, Time, environment: Autumn, football game				
Actions: Walking, Running, Flying				
Relationship of objects: Above, Fighting				
		STILL BEECK		

https://brianmmurray.wordpress.com/2013/02/28/feeling-anxious-spend-time-with-nature/ https://www.jconline.com/picture-gallery/sports/2020/10/31/zander-horvath-look-purdue-football-running-back/6103553002/ https://www.rogerebert.com/reviews/ip-man-4-the-finale-movie-review-2019

Why to synthesize data?

- rare events (disasters, accidents, endangered species)
- dangerous environments (fire, pedestrians jumping into traffic)
- seasonal delays (evaluate vision's responses to winter)
- augmented reality
- flexible viewing angles
- scale up to interactions of multiple objects
- repeatable evaluation
- additional information: depth, speed, weight and volume

Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications International Journal of Computer Vision (2018)

3D Reconstruction

Crowd Understanding

Action Recognition

.... Urban Scene Understanding

Indoor Scene Understanding

Multi-agent Collaboration

.....

User Input

Depth/Multi-View

Human Training

....

Aerial Surveying

Segmentation/Bounding Box Camera Localization

Physics Yung-Hsiang Lu, Purdue University

Video

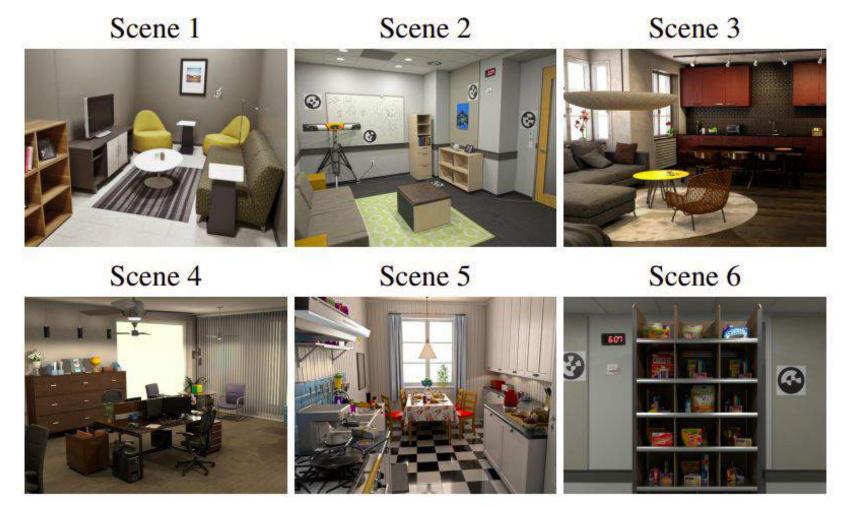
Factors to consider in synthesized data

- Photo-realistic or not
- Physics (inertia, gravity, turbulence, mass, size, elasticity)
- Weather (wind, rain, fog, sun, shadow)
- Time
- Power and energy
- Surface properties (e.g., reflection)
- Human behavior
- Interaction with physical components

Applications

Photorealistic Image Synthesis for Object Instance Detection IEEE International Conference on Image Processing 2019

Physics-based modeling:


- scattering
- refraction and reflection
- diffuse
- usually very slow

Photorealistic images synthesized by the proposed approach

Real images from LineMod [4] and Rutgers APC [2] datasets

Yung-Hsiang Lu, Purdue University

Virtual Worlds as Proxy for Multi-Object Tracking Analysis Adrien Gaidon, Qiao Wang, Yohann Cabon, Eleonora Vig

CVPR 2016

Is this real or virtual?

Is this real or virtual?

Segmentation and Depth

Challenge in Data Labeling (for Video)

- volume of data (30 frames per second, multiple objects)
- movement
- occlusion
- diversity

Meanwhile, synthesizing data also has many challenges:

- photorealism
- time-consuming to generate high-quality data
- Playing video games need human players

Generate Virtual World

- 1. acquire real-world data as a starting point for calibration
- 2. clone this real-world data into a virtual world
- 3. generate synthetic sequences with different weather conditions
- 4. create ground truth annotations
- 5. evaluate the "usefulness" of the synthetic data

Figure 2: Frames from 5 real KITTI videos (left, sequences 1, 2, 6, 18, 20 from top to bottom) and rendered virtual clones (right).

Figure 3: Simulated conditions. From top left to bottom right: clone, camera rotated to the right by 15° , to the left by 15° , "morning" and "sunset" times of day, overcast weather, fog, and rain.

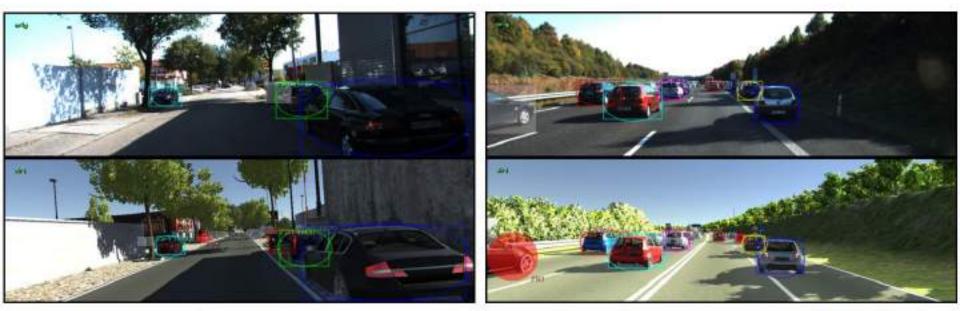
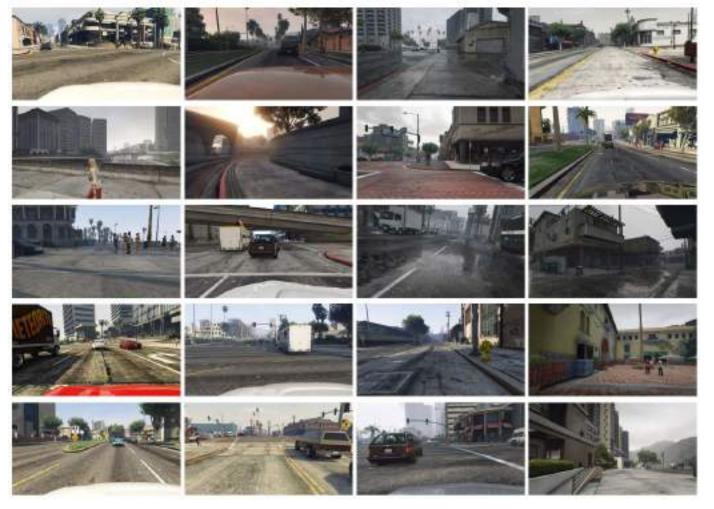


Figure 5: Predicted tracks on matching frames of two original videos (top) and their synthetic clones (bottom) for both DP-MCF (left) and MDP (right). Note the visual similarity of both the scenes and the tracks. Most differences are on occluded, small, or truncated objects.

Playing for Data: Ground Truth from Computer Games


Stephan R. Richter, Vibhav Vineet, Stefan Roth, Vladlen Koltun ECCV 2016

Capture Graphics Commands in Game

- open-source games lack details like commercial games
- source code of commercial game engine unavailable
- create pixel-wise semantic labels
- record and reproduce rendering commands at operating systems
- method: intercept communication between software and hardware
 - identify relevant function calls
 - identify hardware resources
 - format for annotation
- 25,000 images, 49 hours for labeling, about 7 seconds / image

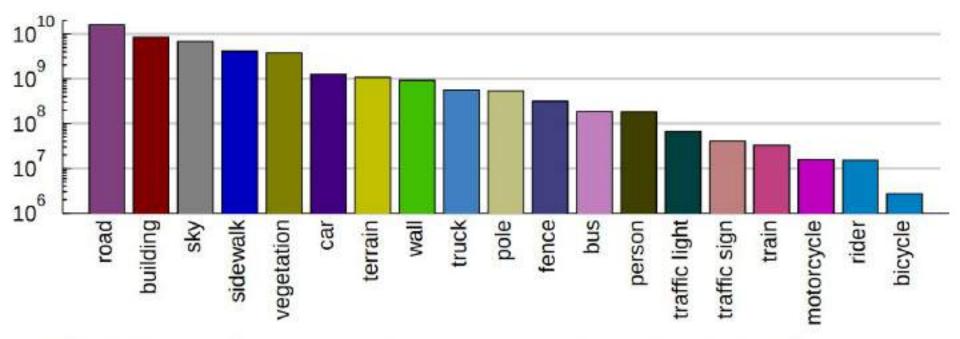


Fig. 4. Number of annotated pixels per class in our dataset. Note the logarithmic scale.

	#pixels [10 ⁹]	annotation density [%]	annotation time [sec/image]	annotation speed [pixels/sec]
GTA5	50.15	98.3	7	279,540
Cityscapes (fine) [11]	9.43	97.1	5400	349
Cityscapes (coarse) [11]	26.0	67.5	420	3095
CamVid [8]	0.62	96.2	3,600	246
KITTI [39]	0.07	98.4	N/A	N/A