Computer Vision for Embedded Systems

Yung-Hsiang Lu Purdue University yunglu@purdue.edu

Evaluate Computer Vision

Evaluating Computer Vision

For many people, the only metric is the accuracy using a specific dataset. Even this leaves many questions:

- Which dataset is used?
- Why is this dataset chosen?
- How is accuracy defined?
- What other methods are compared?

Technology Review

Artificial intelligence / Machine learning

Training a single AI model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

by Karen Hao

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000 <

Training one model (GPU)

NLP pipeline (parsing, SRL)	39
w/ tuning & experimentation	78,468
Transformer (big)	192
w/ neural architecture search	626,155 <

Emma Strubell, Ananya Ganesh, Andrew McCallum, "Energy and Policy Considerations for Deep Learning in NLP" 2019

IMAGE RECOGNITION

SPEECH RECOGNITION

Microsoft

(Training)

Baidu

Source: cs231n.stanford.edu/slides/2017/cs231n_2017_lecture15.pdf

https://www.newegg.com/gigabyte-geforce-gtx-1080-gv-n1080ix-8gd/p/N82E16814932009 https://www.congatec.com/us/congatec/press-releases/article/congatec-doubles-performance-with-amd-ryzentm-embedded-v2000-processor/https://www.pcmag.com/picks/the-best-graphics-cards

Transmit all data from cameras to to servers?

- latency: wireless signals travel at 3.33 microseconds/km
- data rates:
 - Bluetooth up to 3Mb/s, up to 10 meters
 - Wifi (802.11ax) up to 2.4 Gb/s, 70 meters (indoors), 240 outdoors
 - 5G up to 20Gbps, 500 meters
- power: omnidirectional antenna power proportional to the square of distance.
 directional antenna can be much more efficient
- privacy: who owns the servers? is data encrypted?
- Homomorphic encryption is not ready yet.

ATT and T Mobile Coverage

Precision and Recall

source: wikipedia

Factors and metrics for performance

- Accuracy: precision, recall, top-3, top-5, hierarchical
- Execution time: per image (or video frame)
- FPS: frames per second
- FLOPS: floating-point operations
- Memory: to store machine learning model and to process data
- Resolution: number of pixels (width x height)

"Skynet processing at 60 Teraflops a second."
- Movie Terminator 3

Tuning Parameters (depend on applications)

- Resolution: how many pixels are needed?
- Frame rate: do you really need 30 frames per second?
- Accuracy: estimating crowd or recognizing faces for secure areas?
- General or special purpose?
- Layers of neural networks
- Size of convolution filters

Measuring performance can be complex

GFLOPS/second does not directly translate to performance

(execution time)

- Integer operations
- Pipeline processors
- Memory hierarchy
- Thermal throttling
- ...

Analysis of Neural Networks

Analysis of Neural Networks

- Which neural networks are analyzed?
- What metrics are used?
- How do these networks perform?
- What patterns can be observed?

Benchmark Analysis of Representative Deep Neural Network Architectures 10.1109/ACCESS.2018.2877890

Top-1 accuracy density [%/M-params]

Top-1 accuracy density [%/M-params]

Images per second [FPS]

Compare Networks by Training

Application	Model	Number of Layers	Dominant Layer	Implementations	Dataset
Image classification	ResNet-50 [56] Inception-v3 [80]	50 (152 max) 42	CONV	TensorFlow, MXNet, CNTK	ImageNet1K [73]
Machine translation	Seq2Seq [79] Transformer [82]	5 12	LSTM Attention	TensorFlow, MXNet TensorFlow	IWSLT15 [21] WMT-14 [18]
Object detection	Faster R-CNN [71]	101°	CONV	TensorFlow, MXNet	Pascal VOC 2007 [37]
Speech recognition	Deep Speech 2 [13]	9b	RNN	MXNet	LibriSpeech [64]
Adversarial learning	WGAN [40]	14+14 ^c	CONV	TensorFlow	Downsampled ImageNet [29]
Deep reinforcement learning	A3C [62]	4	CONV	MXNet	Atari 2600

Dataset	Number of Samples	Size	Special
ImageNet1K	1.2million	3x256x256 per image	N/A
IWSLT15	133k	20-30 words long per sentence	vocabulary size of 17188 (English to Vietnamese)
WMT-14	4.5million	up to 50 words (most sentences)	vocabulary size of 37000 (English to German)
Pascal VOC 2007	5011 ^d	around 500x350	12608 annotated objects
LibriSpeech	280k	1000 hourse	N/A
Downsampled ImageNet	1.2million	3x64x64 per image	N/A
Atari 2600	N/A	4x84x84 per image	N/A

H. Zhu et al., "Benchmarking and Analyzing Deep Neural Network Training," 2018 IEEE International Symposium on Workload Characterization (IISWC), 2018, pp. 88-100, doi: 10.1109/IISWC.2018.8573476.

Fig. 5: GPU compute utilization for different models on multiple mini-batch sizes.

(c) Seq2Seq

(c) Seq2Seq

(f) Deep Speech 2

(f) Deep Speech 2

Fig. 6: GPU FP32 utilization for different models on multiple mini-batch sizes.

Fig. 8: GPU memory usage breakdown for different models on multiple mini-batch sizes.

Introducing the CVPR 2018 On-Device Visual Intelligence Challenge Friday, April 20, 2018, Google Al Blog

Yung-Hsiang Lu, Purdue University

Network Pruning

What is the state of neural network pruning? Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, John Guttag

Reproducibility Challenge

Reproducing results in research papers can be hard:

- lack of source code
- comparable hardware
- software environment, library and right versions
- undocumented parameters

Summary

- Computer vision can be evaluated in many different ways, including performance.
- Performance can be defined in different ways, such as execution time.
- Many factors affect performance, such as the sizes of the networks, but the relationships are not straight lines.
- Training time is affected by the sizes of mini batches.