Computer Vision for
Embedded Systems

Yung-Hsiang Lu
Purdue University
yunglu@purdue.edu

PURDUE

UNIVERSITY

Yung-Hsiang Lu, Purdue University

Why Quantization
from 32-bit floating point to 8-bit integer:

75% reduction in memory requirements (32 = 8)

50% - 75% reduction in memory bandwidth

950% - 75% reduction in execution time

usually at lower accuracy

PyTorch quantized models are traceable and scriptable
can mix quantized and floating point operations in a model

https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

Yung-Hsiang Lu, Purdue University

Quantization in PyTorch

Yung-Hsiang Lu, Purdue University

Three types of quantization

e Dynamic: FP values are stored in memory. convert to int before
computation. torch.quantization.quantize dynamic

e Static: Observers, Operator fusion, Per-channel quantization.
torch.quantization.fuse modules,
torch.quantization.prepare,
torch.quantization.convert

e Quantization-Aware Training (QAT): use FP in training, forward pass
round to int. torch.quantization.prepare gat,

torch.quantization.convert

e quantized operators are supported only for CPU inference

Yung-Hsiang Lu, Purdue University

Select Quantization

factors: speed / accuracy requirements, supported operators

Model Type Preferred scheme Why

LSTM/RNN Dynamic Quantization Throughput dominated by compute/memory bandwidth for
weights

BERT/Transfor = Dynamic Quantization Throughput dominated by compute/memory bandwidth for

mer weights

CNN Static Quantization Throughput limited by memory bandwidth for activations

CNN Quantization Aware In the case where accuracy can't be achieved with static

Training quantization

LSTM: Long short-term memory, RNN: Recurrent neural network, BERT: Bidirectional Encoder
Representations from Transformers

Yung-Hsiang Lu, Purdue University

Performance (Time)

BERT

Resnet-5
0

Mobilene
t-v2

581

214

97

Quantized

Latency
(ms)

313

103

17

Inference
Performance
Gain

1.8x Xeon-D219 Batch size = 1, Maximum sequence
1 (1.6GHz) length= 128, Single thread, x86-64,
Dynamic quantization

2X Xeon-D219 @ Single thread, x86-64, Static
1 (1.6GHz) quantization
5.7x Samsung Static quantization, Floating point
S9 numbers are based on Caffe2 run-time

and are not optimized

Yung-Hsiang Lu, Purdue University

Top-1 Accuracy

(Float)

Top-1 Accuracy
(Quantized)

Quantization scheme

Googlenet
Inception-v3
ResNet-18
Resnet-50

ResNext-101
32x8d

Mobilenet-v2

Shufflenet-v2

BERT

69.8

77.5

69.8

76.1

79.3

71.9

69.4

0.902

69.7

771

69.4

75.9

79

71.6

68.4

0.895

Yung-Hsiang Lu, Purdue University

Static post training quantization
Static post training quantization
Static post training quantization
Static post training quantization

Static post training quantization

Quantization Aware Training

Static post training quantization

Dynamic quantization

Eager vs. FX Quantization

_ Eager Mode Quantization FX Graph Mode Quantization

Release Status beta prototype
Operator Fusion Manual Automatic
Quant/DeQuant Manual Automatic
Placement

Quantizing Modules Supported Supported
Quantizing Manual Automatic

Functionals/Torch Ops

Support for Limited Support Fully Supported
Customization

https://pytorch.org/docs/stable/quantization.html

Yung-Hsiang Lu, Purdue University

_ Eager Mode Quantization FX Graph Mode Quantization

Quantization Mode Post Training Quantization: Static, Post Training Quantization: Static,
Support Dynamic, Weight Only Dynamic, Weight Only

Quantization Aware Training: Static Quantization Aware Training: Static

Input/Output Model Type torch.nn.Module torch.nn.Module (May need some
refactors to make the model
compatible with FX Graph Mode
Quantization)

When to use when execution time is dominated by

loading weights from memory rather
than matrix multiplications

Yung-Hsiang Lu, Purdue University

import torch
floati ng poin t model Eager Mode Quantization

¥ define a 1
class M(toxch.nn.Module):
def __init__(self): . g .
super(M, self) .__'init__()DynamIc Quantlzatlon
self.fc = torch.nn.Lineax(s, 4)

def forwarxd(self, x):
X = self.fc(x)
return x

creat

model _£p32 = M()

create a gquantized model instance

model_int8 = toxch.quantization.quantize_dynamic(
model_f£p32, # the original wodel
{torch.nn.Lineaxrt, # a set of layers to dynamically guantize
dtype=torch.qint8) # the target diype for quantized weights

S
e a mooel instance

run the model
input_f£p32 = torch.randn(4, 4, 4, 4)
res = model_int8(input_1£p32)

Yung-Hsiang Lu, Purdue University 10

impoxt torch

o
r4

¥ define a Il
CAT
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
QuantStub converts tensors from fleating point to quantized
self.quant = torch.quantization.QuantStub()
self.conv = torch.nn.Conv2d(1, 1, 1)
self.bn = toxch.nn.BatchNorm2d(1)
self.relu = torch.nn.RelU()

3 1Y 5 o o N P - - P~ - [, a rs T a s > e
DeQuantStub converts tenscors from quantized to floating

ating point model where some layers could benefit Irom

point

self.dequant = torch.quantization.DeQuantStub()

def forward(self, x):
= self.quant(x)
= self.conv(x)
= self.bn(x)

= self.relu(x)

=- self;dequantx) Quantization Aware Training

return x

Eager Mode Quantization

x X X x X

Yung-Hsiang Lu, Purdue University

11

create a model instance
model_£p32 = M()

model must be set to train mode for QAT logic to work
model_f£p32.train()

attach a global qconfig, which contains information about what kind
of observers to attach. Use 'fbgemm' for server inference and

'gnnpack' for mobile inference. Other guantization configurations
such

as selecting symmetric or assymetric quantization and MinMax or
LZNoxrm

calibration techniqgues can be specified here.

model_f£p32.qconfig =
toxch.quantization.get_default_gat_qconfig(fhgemm')

fuse the activations to preceding layers, where applicable

this needs to be done manually depending on the model architecture

model_£fp32_fused = torch.quantization.fuse_modules(model_f£fp32,
[['conv', 'bn', 'relu'll)

Yung-Hsiang Lu, Purdue University 12

Prepare the mocdel for QAT. This inserts cbservers and fake_quants
in

the model that will observe weight and activation tensors during
calibration.

model_£p32_prepared =
torch.quantization.prepare_qat(model_£p32_fused)

run the training loop (not shown)
training_loop(model_£p32_prepared)

Convert the observed model to a quantized model. This does several
things:

quantizes the weights, computes and stores the scale and bias value
to be

used with each activation tensor, Tuses modules where appropriate,
and replaces key operators with quantized implementations.
model_£p32_prepared.eval()

model_int8 = toxch.quantization.convert(model_£p32_prepared)

run the model, relevant calculations will happen in int8
res = model_int8(input_f£p32)

Yung-Hsiang Lu, Purdue University

13

Common Errors

When calling torch.load on a quantized model, if you see an error like:

AttributeExrror: 'LinearPackedParams’' object has no attribute
' _modules'

This is because directly saving and loading a quantized model using torch.save and

torch.load is not supported. To save/load quantized models, the following ways can be used:

14

Yung-Hsiang Lu, Purdue University

Passing a non-quantized Tensor into a quantized kernel

If you see an error similar to:

RuntimeExxoxr: Could not xrun 'quantized::some_operator' with arguments
from the 'CPU' backend...

Passing a quantized Tensor into a non-quantized kernel

If you see an error similar to:

RuntimeError: Could not run 'aten::thnn_conv2d forward' with
arguments from the 'QuantizedCPU' backend.

Yung-Hsiang Lu, Purdue University 15

