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Types of papers

Type
Research
Survey
Tutorial
Magazine

Vision

Reader

in the same field
wide

beginners in the field
wide

researchers in the field

Content

New knowledge

Summary of existing work
How to start doing research
Introduction

Important problems to solve

Yung-Hsiang Lu, Purdue University

Authors

Beginners to experts
Experts

Beginners to Experts
Usually experts

Experts



Research Paper

Title, Authors
Abstract, Introduction
Tight space

(often) double column
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Survey Paper (often more than 100 references)

EE T

Received lomuary 4, 2018, accepoed Febouary A 2010, date of publcation Febeuary 19, 2018 date of cursent weesion March 28, 2010
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Tutorial

Computer (Volume: 29,
Issue: 3, Mar 1996)

Anil K. Jain
Michigun State University

Jianchang Mao
| KM Mohiuddin
| IBM Almoxden Research Center
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Artificial Neural
Networks: A Tutorial

umerous advances have been made i developing inzelligent
systems, some Insplred oy blological neural nerworks
Researchers from many scientific disciplines are designing ard
fcial neural petworks {ANNs) to solve a variety of problems in pattern
vy, and coptrol

aninon, pr ediction, OPTisuzanion, associanye memoy
mee the *Challenging problems” sidebar)
Conventional approaches have been proposed for solving these prob

lems. Although successiul applications can be loamd in certain well-<on-

roaments, none is flexable enough 1o perform well outside

strasned em

1. ANNS provade exciting altesnant
could benefit from using chem '
This article & tor thase readers with licre or 5o knowledge of ANNS (o

its domea ves, and many applscatsons

help them understand the other astides in this issue of Computer. We dis-
ouss the motivations behind the developmwens of ANNs, describe 1he basic

hiclagical neuron and the artificial computatdonal model, cutline nes

work archivectures and leaming processes, and present some of the most

commondy usod ANN modals, We canclade with charscter recognition, &

.9

successiul ANN applicaton
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Von Neumann Biological
. computer - neural system
Processor  Complex Simple
High speed Low speed
One or a few A large number
Memory Separate from a processor  Integrated into
S Localized processor
Noncontent addressable Distributed
Content addressable
Computing Centralized Distributed
. Sequential Parallel
Stored programs Seif-learning
Reliability  Very vulnerable Robust
Expertise  Numerical and symbolic = Perceptual
manipulations problems
Operating  Well-defined, Poorly defined,
environment well-constrained unconstrained
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Figure 2. McCulloch-Pitts model of a neuron.

Yung-Hsiang Lu, Purdue University

and has the desired asymptotic properties.
The standard sigmoid function is the logis-
tic function, defined by

g(x) = 1/(1 + exp{-P x}),
where (3 is the slope parameter.

Network architectures

ANNs can be viewed as weighted directed
graphs in which artificial neurons are
nodes and directed edges (with weights)
are connections between neuron outputs
and neuron inputs.

1



Neural networks
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Magazine paper

The Future

of Human-
in-the-Loop
Cyber-Physical
Systems

Gunar Schirner, Deniz Erdogmus, and Kaushik Chowdhury, Northeastern University

Taskin Padir, Worcester Polytechnic Institute 13

Yung-Hsiang Lu, Purdue University



A prototyping platform and a design
framework for rapid exploration of a novel
human-in-the-loop application serves as an
accelerator for new research into a broad
class of systems that augment human in-
teraction with the physical world.

uman-in-the-loop cyber-physical systems
(HILCPSs} comprise a challenging and promis-
ing class of applications with immense potential
for impacting the daily lives of many people. As
Figure | shows, a typical HILCPS consists of a loop invaly-
ing a human, an embedded system {Ihe cyber cComponent),
and the physical environment. Basically, the embedded
system augmenis a human's interaction with the physs-
cal world
A HILCPS infers the user's intent by measuring human
cognitive activity through body and brain sensors. The
embedded system in turn transtates the intent into robos
control signals to interact with the physical environment
on the human's behalf via robotic actuators, Finally, the
human closes the loop by observing the physical world
interactions as input for making new decisions,
Examples of HILCPSs include brain-computer inter-
face (BCIs), controlled assistive robots.” and intelligent
prostheses.

HILCPS applications offer beneliis in many realms—
for example. the population of functionally locked-in
individuals would benefit tremendously from such sys.
tems. Because these individuals cannot interact with
the physical world through their own moverment and
speech. they often must rely heavily on support from
caregivers to perform fundamental everyday tasks,
such as eating and communicating. As the "Fundamen-
tal Autonomy for Functionally Locked In Individuals®
sidebar describes, 8 HILCPS could aid in restoring
come aulonomy by offering alternative interfaces (o
the cyher-physical envirconment for interaction, comi-
murication. and control,

MULTIDISCIPLINARY CHALLENGES

Designing and implementing a HILCPS poses tremen-
dous chailenges and is extremely time-consuming. Experts
from many disciplines need to join forces to successfully
solve these challenges.

Transparent interfaces

Traditional dedicated interfaces to the virtual world,
such as the kevboard. mouse, and jovstick, are less suit-
able for augmenting human interaction in the physical
world. This environment requires transparent interfaces
that use existing electrophysiological signals such as
electroencephalography (EEG), electrocardiography
(ECG), and electromyography (EMG), which measure
efectrical signals emirted by the brain, heart, and skel-
etal muscles. respectively. Additional auxiliary sensors

Yung-Hsiang Lu, Purdue University
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Sidebar (common in magazine papers)

Fundamental Autonomy
for Functionally Locked-In
Individuals
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Vision Paper

ACM SIGMOBILE Mobile

Mobile Computing: the Next Decade

Mahadev Satyanarayanan

Computing and Communications School of Computer Science, Carnegie Mellon Unmiversity

Review April 2011

In the maugural issue of MC2R in April 1997 [24], | highlighted the seminal influence

of mobility in computing. At that time, the goal of “information at your fingertips any-
where, anytime™ was only a dream. Today, through relentless pursuit of innovations in
wireless technology, energv-efficient portable hardware and adaptive software, we have
largely artained this goal, Ubigquitous email and Web access is a reality that is experi-
enced by millions of users worldwide through their Blackberries, iPhones, iPads, Windows
Phone devices, and Android-based devices. Mobile Web-based services and location-aware
advertising opportunities have emerged, triggering large commercial investments. Mobile
computing has arrived as a lucrative business proposition.
Looking ahead, what are the dreams that will inspire our future efforts in mobile comput
ing? We begin this paper by considering some imaginary mobile computing scenarios from
the future. We then extract the deep assumptions implicit in these scenarios, and use them
to speculate on the future trajectory of mobile computing.

Yung-Hsiang Lu, Purdue University



Write Research Papers

Yung-Hsiang Lu
Electrical and Computer Engineering



You have something to say (discovery)

New Knowledge

Human Knowledge

| 19
Yung-Hsiang Lu, Purdue University



Why do you write research papers?

You have something worth sharing (research findings)
You are a researcher (or a doctoral student)

You want to become special and famous

“Publish or perish” in academia

If | do not want to get PhD, | do not need to know how to write
papers = wrong.

If you invent new technologies, you may want to publish them
(as papers or patents or both) so that (1) people understand
your inventions (2) your inventions are protected.

| 20
Yung-Hsiang Lu, Purdue University



Recommended Books
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Why to Write Research Papers?

You have something new to tell the research community

New solution to an existing problem
New problem

New understanding of a problem

New formulation or interpretation

New to the research community, not new to you.
Anything that can be found in books or papers is not new.

Yung-Hsiang Lu, Purdue University



Examples of Research Papers

= New ways to transmit wireless signals

= New methods to protect data from unauthorized access
= New evidence explaining dinosaur extinction

= New disease or new ways of transmitting the disease

= New materials for buildings or airplanes

= New safety features for vehicles

= New relationship between interest rates and economy

| 23
Yung-Hsiang Lu, Purdue University



When should you start writing a paper?

e The earlier, the better (a least three months)

e Help you organize your thinking

e Guide you design and conduct experiments

e Formulate hypothesis to be validated or overthrown
e Focus your effort on relevant tasks

Reduce “deleted scenes’ like movies

| 24
Yung-Hsiang Lu, Purdue University



Start with “one sentence summary”.

The summary guides the creation of the paper. Examples:

e \We demonstrate that masks can effectively reduce the
transmission of coronavirus.

e \We create a vaccine for coronavirus; that is 94% effective in
phase 3 trials.

e We propose a method to train machine learning 26% faster
than the best existing method.

| 25
Yung-Hsiang Lu, Purdue University



More examples of one-sentence summary

e \We discover a security vulnerability among 62% of
deployed computers.

e We build the world-first solar-powered airplane that can fly
over 1,000 km.

e We design and implement a system that can search web
pages on the Internet.

e We collect the data from five million people to analyze the
relationship between wealth and longevity.

Understand the different strengths of words: prove,
demonstrate, observe, hypothesize

Yung-Hsiang Lu, Purdue University
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How to write the one-sentence summary

Select verbs: demonstrate, discover, design, build, create
Select problems: transmission of diseases, cure of
diseases, solar-powered plane, search the Internet

Set metrics for success: 26% faster, 1000km, 62%
deployed computers, 5 million people

| 27
Yung-Hsiang Lu, Purdue University



Writing is a process of
Iterative improvements

You will write and revise many times

Yung-Hsiang Lu, Purdue University



Structure of Research Papers

Yung-Hsiang Lu, Purdue University
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Structure of a Research Paper

= Title, authors, affiliations

= Abstract (~150 words, 7 page)

= Introduction (15% of paper)

= Background, Related Work (10% of paper)

= (optional) Description of the problem, examples (5-10%)
= (optional) Settings of the problems (5%)

= Your solution (30-40%, depending on areas)
= Evaluation and comparison (20-40%)

= (Optional) Discussion (5-10%)

= Conclusion (~150 words, V4 page)

= References (10%, 2-3 x number of pages)

Yung-Hsiang Lu, Purdue University
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Creativity in content, not the formats.
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Examples of Paper Titles

2019 CVPR
e Efficient Video Classification Using Fewer Frames

e Learning to Generate Synthetic Data via Compositing

e \Weakly Supervised Person Re-ldentification

e (Guided Stereo Matching

2019 MobiSys

e Graphics-aware Power Governing for Mobile Devices

e Understanding and Detecting Overlay-based Android
Malware at Market Scales

e Liquid Testing with Your Smartphone

e Are RFID Sensing Systems Ready for the Real World?

Yung-Hsiang Lu, Purdue University
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To Add or Not To Add? Project’s Name

MURP: My Unknown Research Project
Many people include the projects’ names in the title.
It is your decision, of course.
| think that's bad because nobody knows what it means.
If your project is famous, you don’t need to publish.
If your project is unknown, the name wastes space.

Yung-Hsiang Lu, Purdue University



IEEE considers individuals who meet all of the following criteria

to be authors:

1. Made a significant intellectual contribution to the theoretical
development, system or experimental design, prototype
development, and/or the analysis and interpretation of data
associated with the work contained in the article.

2. Contributed to drafting the article or reviewing and/or
revising it for intellectual content.

3. Approved the final version of the article as accepted for
publication, including references.

Yung-Hsiang Lu, Purdue University



Anyone listed as Author on an ACM manuscript submission

must meet all the following criteria:

e they have made substantial intellectual contributions to
some components of the original work described in the
manuscript; and

e they have participated in drafting and/or revision of the
manuscript and

e they are aware the manuscript has been submitted for
publication; and

e they agree to be held accountable for any issues relating to
correctness or integrity of the work.

Yung-Hsiang Lu, Purdue University
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Lightweight Multi-View 3D Pose Estimation
through Camera-Disentangled Representation

Edoardo Remelli’ Shangchen Han® Sina Honari' Pascal Fua' Robert Wang*

'CVLab, EPFL, Lausanne, Switzerland
*Facebook Reality Labs, Redmond, USA

Title
Authors

Affiliations

Marcus Valtonen Ornhag!

!Centre for Mathematical Sciences
Lund University

A Unified Optimization Framework for Low-Rank Inducing Penalties

Carl Olsson!-2

“Department of Electrical Engineering
Chalmers University of Technology

{marcus.valtonen.ornhag, carl.olsson}@math.lth.se

Pixel Consensus Voting for Panoptic Segmentation

Michael Maire
University of Chicago

Ruotian Luo
TTI-Chicago

rluofttic.edu

Haochen Wang
Carnegie Mellon University

whow@comu. edu mmairefuchicago.edu

Greg Shakhnarovich
TTI-Chicago

greg@ttic.edu

Yung-Hsiang Lu, Purdue University
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Structure of a Research Paper

= Title, authors, affiliations

= Abstract (~150 words, "4 page)

= Introduction (15% of paper)

= Background, Related Work (10% of paper)

= (optional) Description of the problem, examples (5-10%)
= (optional) Settings of the problems (5%)

= Your solution (30-40%, depending on areas)
= Evaluation and comparison (20-40%)

= (Optional) Discussion (5-10%)

= Conclusion (~150 words, V4 page)

= References (10%, 2-3 x number of pages)

Yung-Hsiang Lu, Purdue University
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Abstract (12-15 sentences)

SANNANE A

Problem description (2 sentences)

Existing work and deficiencies (2-3 sentences)
Your method and why it is better (3-5 sentences)
Evaluation methods (2-4 sentences)

Results and comparison (3 sentences)
(Optional) Implications and impacts

Yung-Hsiang Lu, Purdue University
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Motivation and Problem

Motivation: Improve environmental sustainability
Problem: Create degradable plastic

Motivation: Improve transportation safety
Problem: Create vehicle communication

https://www.usatoday.com

https://daseuropeanautohaus.com Yung-Hsiang Lu, Purdue University



Common Mistakes

These are not problems: motivation, deficiencies in existing
solutions, difficulty in existing solutions, history

Eliminating a disease: too big for a paper

Existing solution is too slow or expensive

“I do not know how to solve it”

“People have tried and failed”

Some beginning researchers say, “There is no existing
work. | am the first.”

These people treat ignorance as innovation

Before selecting a problem, read research papers

| 40
Yung-Hsiang Lu, Purdue University



Abstract (12-15 sentences)

Problem description (2 sentences)

1.
2. Existing work and deficiencies (2-3 sentences)
3. Your method and why it is better (3-5 sentences)

4.
5
6

Evaluation methods (2-4 sentence)
Results and comparison (3 sentences)

. (Optional) Implications and impacts

Yung-Hsiang Lu, Purdue University
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Four stages of doing research

1. Excitement due to ignorance

Frustration and disappointment with knowledge (after
reading papers)

Experiments and failures

4. Improvement and innovation

(S)

| 42
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Abstract (12-15 sentences)

AN i e

Problem description (2 sentences)

Existing work and deficiencies (2-3 sentences)
Your method and why it is better (3-5 sentences)
Evaluation methods (2-4 sentence)

Results and comparison (3 sentences)

(Optional) Implications and impacts

Yung-Hsiang Lu, Purdue University
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Explain Your Method

1. What do you do?

2. How is it different?

3. Why is it better? (Conceptually)

If it is not better, do not waste time writing a paper
Some students say, “It is better by experiments.”

If you do not know why it is better, you have no paper.

Yung-Hsiang Lu, Purdue University
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Abstract (12-15 sentences)

A S o e

Problem description (2 sentences)

Existing work and deficiencies (2-3 sentences)
Your method and why it is better (3-5 sentences)
Evaluation methods (2-4 sentence)

Results and comparison (3 sentences)
(Optional) Implications and impacts

Yung-Hsiang Lu, Purdue University
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Abstract (12-15 sentences)

ARl

Problem description (2 sentences)

Existing work and deficiencies (2-3 sentences)
Your method and why it is better (3-5 sentences)
Evaluation methods (2-4 sentence)

Results and comparison (3 sentences)
Usually have numbers

(Optional) Implications and impacts

Yung-Hsiang Lu, Purdue University
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Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks
Advances in Neural Information Processing Systems 25 (NIPS 2012)

we achieved top-1 and top-5 error rates of 37.5% and 17.0% ...
ILSVRC-2012 competition and achieved a winning top-5 test
error rate of 15.3%, compared to 26.2%

| 47
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Structure of (Computer System) Papers

» Title, authors, affiliations

Abstract (~150 words, 7: page)

= Introduction (15% of paper)

= Background, Related Work (10% of paper)

= (optional) Description of the paper, examples (5-10%)
= (optional) Settings of the problems (5%)

= Your solution (30-40%, depending on areas)

= Evaluation and comparison (20-40%)

= (Optional) Discussion (5-10%)

= Conclusion (~150 words, V4 page)

= References (10%)

Yung-Hsiang Lu, Purdue University
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Concise

= Use as few words as possible, as many as necessary
= Shorter sentences are stronger

* | have a dream

* We choose to go to the Moon

* Don’t follow the crowd, let the crowd follow you.

| 49
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Use as few words as possible

For the purpose of creating a plan that aims to respond to
events which may happen in the future, our team in this
organization will have a meeting in which the team will talk,
discuss, and write a plan on paper.

= We will meet and write a plan.

Our team in this university has discovered a mathematical
procedure which shows this description of the properties is
correct in every possible scenario that can be constructed.

= We prove this is true.

| 50
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Structure of a Research Paper

= Title, authors, affiliations

= Abstract (~150 words, 7 page)

» Introduction (15% of paper)

= Background, Related Work (10% of paper)

= (optional) Description of the problem, examples (5-10%)
= (optional) Settings of the problems (5%)

= Your solution (30-40%, depending on areas)
= Evaluation and comparison (20-40%)

= (Optional) Discussion (5-10%)

= Conclusion (~150 words, V4 page)

= References (10%, 2-3 x number of pages)

Yung-Hsiang Lu, Purdue University
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Abstract = Introduction

.
2.
3.
4.

Problem description = First Paragraph

Existing work and deficiencies = Second Paragraph
Your method and why it is better = Third Paragraph
Evaluation methods + Comparison = Fourth Paragraph

| 52
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One (good) figure is worth 1,000 words

Yung-Hsiang Lu, Purdue University
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B: Training Image Fashion Parsing Results E: Color Palette for all Categories

Si Liu, Jiashi Feng, Csaba Domokos, Hui Xu, Junshi Huang, Zhenzhen Hu, and Shuicheng Yan, Fashion Parsing With
Weak Color-Category Labels, IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 1, JANUARY 2014
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Voice and Tense

= Active voice (we) is common in some areas but not others

7 13 7 14

= e.g. "We propose a solution”, “We present a method”, “We

LN 11 M«

design a system”, “We prove”, “We demonstrate” ...
Present tense is common, even though the research has
already been done.

= Avoid mixing present and past tenses in the same

sentences, e.g., "We invented a solution and the solution
uses machine learning.”
Mix “We propose a method”, “The proposed method”, “Our

method”, “The new method”, “The improved method”

| 55
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On Spectral Clustering:
Analysis and an algorithm

Andrew Y. Ng Michael 1. Jordan Yair Weiss
CS Division CS Div. & Dept. of Stat.  School of CS & Eng
U.C. Berkeley U.C. Berkeley The Hebrew Univ.

ang@ics. berkeley. edu Jjordan@cs. berkeley.edu yweissOes huji.ac.il

Abstract

Despite many empirical successes of spectral clustering methods—
algorithms that cluster points using eigenvectors of matrices de-
rived from the data—there are several unresolved issues. First,
there are a wide variety of algorithms that use the eigenvectors
in slightly different ways. Second, many of these algorithms have
no proof that they will actually compute a reasonable clustering,
In this paper, we present a simple spectral clustering algorithm
that can be impiemented using a few lines of Matlab. Using tools
from matrix perturbation theory, we analyze the algorithm, and

Yung-Hsiang Lu, Purdue University
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DEEP COMPRESSION: COMPRESSING DEEP NEURAL
NETWORKS WITH PRUNING, TRAINED QUANTIZATION
AND HUFFMAN CODING

Seng Hun
Stanford University, Stanfard, CA 305 LISA

songhan@stanford. edu

Huizi Mao
Tsinghua University, Beipng, 100084, Chima

mhziZpalls.tsinghua.adu.cn

Wiltiam J. Dally
Stanfond University, Ssanford, CA M35, USA
NVIDLA, Santn Clamn, CA 95050, USA

dallySatanford,eda

ABSTRACT

Newral petwarks sre both computationally intensive and memary intessive, making
thens difficols 10 deploy om emiboddedd systems with Himsed hardware resources. To
E==) address this limitation, we introduce “deep compressson”’, i three stage pipeline:
pruning, traned quantizstion and Huffinen coding, that work topetbes o reduce
e stoepe reguitement of neural nerworks by 352 10 49 without affecting their
accuracy. Our method first prumes the network by dsaming only the important
connectsons. Next, we quantize the weights to enfosce weight sharmy, finally, we
apply Huffman coding, After the first two steps we retruin the setwork © fine <21
e the remalaing connections and the quantized controdds. Pruning, reduces the
number of connections by 9 o 13x: Quantization then reduces the number of
hits that repeesent each conmection from 32 w0 5. On the ImageNet datuset, our
method reducsd the storage requined by AlexNet by 35, from 240MB 10 6.9MB,
without lass of accumcy. Our method roduced the size of VGG-16 by 49 < from
SE2MB w 113MB, again with oo kass of acowacy. This allows fiting the model

Yung-Hsiang Lu, Purdue University
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Why Do Internet Services Fail, and What Can Be Done About It?
David Oppenheimer, Archana Ganapathi, and David A. Patterson, University of California, Berkeley

Abstract

In 1986 Jim Gray published his landmark study of the causes of failures of Tandem systems and the techniques Tandem used
to prevent such failures See J. Gray. Why do computers stop and what can be done about it? Symposium on Reliability in
Distributed Software and Database Systems, 1986... Seventeen years later, Internet services have replaced fault-tolerant
servers as the new kid on the 24x7-availability block. Using data from three large-scale Internet services, we analvzed the
causes of their failures and the (potential) effectiveness of various techniques for preventing and mitigating service failure.
We find that (1) operator error is the largest single cause of failures in two of the three services, (2) operator errors often
take a long time to repair, (3) configuration errors are the largest category of operator errors, (4) failures in custom-written
front-end software are significant, and (5) more extensive online testing and more thoroughly exposing and detecting
component failures would reduce failure rates in at least one service. Qualitatively we find that improvement in the
maintenance tools and systems used by service operations staff would decrease time to diagnose and repair problems.

Yung-Hsiang Lu, Purdue University 58



Structure of Introduction

l.
2
3
4
5.
6
7
8

. Your solution and why it is better __
. [More details about your solution] \ Big Picture /

. Summary of contributions

[Structure of the paper]

"Big picture”, description of the problem
Related work and needed improvements

Evaluation and comparison \Narrower/

[Implications] Focus

/ \

| 59
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Write Good Introduction

Determine the audience’s expected levels of expertise

Use good figures to illustrate whenever possible

Follow the “rules of 3”: Each sentence has at most 30 words
and 3 verbs. Each paragraph no more than  page

Use simple English, even though content may be complex
Do not require anyone to study grammar again

Follow cohesion and coherence rules

| 60
Yung-Hsiang Lu, Purdue University



Cohesion (connections of concepts)

Cohesion: Each sentence should be connected to the main
concept(s) introduced in the previous sentence(s).

» Good: A—B, B—C, C—D ...

» Bad: A—B, C—D, E —>F ...

= Avoid A—B, C—B, D—C ...

= Avoid A—B1,B2—C1, C2—D ...

| 61
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Examples of cohesion

As computers are widely used in business transactions,
security becomes increasingly important. Computer security
usually relies on users providing passwords for authentication.
Passwords need to meet certain rules to be considered secure.

However, different organizations have different rules and create
confusion among users.

| 62
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Examples of cohesion

As computers are widely used in business transactions,
security becomes increasingly important. Computer[Security

usually relies on users providing passwords for authentication.
Passwords need to meet certain rules to be considered secure.

However, different organizations have different rules and create
confusion among users.

| 63
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Examples of cohesion

As computers are widely used in business transactions,
security becomes increasingly important. Computer security
usually relies on users providing passwords for authentication.
Passwords need to meet certain rules to be considered secure.

However, different organizations have different rules and create
confusion among users.

| 64
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Avoid similar but different expressions

As computers are widely used in business transactions,
security becomes increasingly important. To use computers
safely, users need to enter passwords for authentication.
Users typically answer two questions before entering a
system.

= |s security the same as safety”? why two different words?

Autonomous robots can improve our everyday life.
Intelligent machines can work in dangerous areas.

= |s autonomous robot the same as intelligent machine? why
two different words”?

| 65
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Check Cohesion

= Use color pens to mark the important concepts
= Check whether the concepts use the same words
= Examine the connections of concepts

| 66
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Coherence (paragraph needs a focus)

= Coherence: the entire paragraph should have a focus.
Otherwise A—B, B —-C, C —D, ..., Y =7

= Write down “one sentence summary” before writing each
paragraph

| 67
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Structure of Introduction

.
2
3.
4.
5
6
7
8

. Summary of contributions

[Structure of the paper]

"Big picture”, description of the problem
Related work and needed improvements
Your solution and why it is better
[More details about your solution] \ Big Picture /

Evaluation and comparison \Narrower/

[Implications] Focus

/ \
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Third (+ Fourth) Paragraph in Introduction

= Start with “This paper” or “We” or “In this paper, we”

= Readers look for expressions like these

= Choose the right verbs: present, propose, investigate,
demonstrate, develop, design, build, construct, prove,
suggest, hypothesize

= Clearly explain: What you have done, How you do it, How
you evaluate it, What results you get, Is it better than other
methods? By how much?

Yung-Hsiang Lu, Purdue University

69



When to write introduction?

= Some people suggest writing introduction last.

= You will need to revise the introduction many times.

= Need to think about your contributions early.

= Need to think about evaluation early.

= Need to think about the differences between your method
and existing methods.

= You are already writing the introduction.

| 70
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Structure of a Research Paper

= Title, authors, affiliations

= Abstract (~150 words, 7 page)

= Introduction (15% of paper)

» Background, Related Work (10% of paper)
= (optional) Description of the problem, examples (5-10%)
= (optional) Settings of the problems (5%)

= Your solution (30-40%, depending on areas)
= Evaluation and comparison (20-40%)

= (Optional) Discussion (5-10%)

= Conclusion (~150 words, V4 page)

= References (10%, 2-3 x number of pages)

Yung-Hsiang Lu, Purdue University
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Related Work (not Works)

= Provide the context of your work

= Inform readers of the state of the art

= Explain the deficiencies of the existing work

= Describe the metrics for comparison

= Establish your credibility

= Position your own paper

= Cite the papers in the same venue you will submit to

= The number of references is approximately 2 x # pages

| 72
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2. Related Work

Events-to-video reconstruction is a popular topic in the
event camera literature. Early approaches did not recon-
struct videos, but focused on the reconstruction of a sin-
gle image from a large set of events collected by an event
camera moving through a static scene. These works ex-
ploit the fact that every event provides one equation relat-
ing the intensity gradient and optic flow through brightness
constancy [!5]. Cook ef al. [11)] used bio-inspired, inter-
connected networks to simultaneously recover intensity im-
ages, optic flow, and angular velocity from an event cam-
era performing small rotations. Kim ef al. [17] developed
an Extended Kalman Filter to reconstruct a 2D panoramic
gradient image (later upgraded to a full intensity frame by
2D Poisson integration) from a rotating event camera, and
later extended it to a 3D scene and 6 degrees-of-freedom
(6DOF) camera motion [ =] (albeit in a static scene only).
Bardow ef al. [ '] proposed to estimate optic flow and inten-

Yung-Hsiang Lu, Purdue University

Events-To-Video: Bringing Modern Computer
Vision to Event Cameras

Henri Rebecq, Rene Ranftl, Vladlen Koltun,
Davide Scaramuzza; Proceedings of the
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp.
3857-3866
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[I. RELATED WORK

In this work, we provide relevant background on previous
work on video captioning, temporal attention mechanism and
exploitation of local features.

Video Captioning: Up to now, some methods have been pro-
posed for addressing the problems of video captioning, and these
approaches have proved to be significant progress. These meth-
ods could be roughly classified into three types, depending on
the manner in which the sentences are generated. (1) template-
based method: (2) the method based on neural network.

Template-based method [13]-[17] firstly predicts semantic
concepts or words (e.g., subjects, objects and verbs) by differ-
ent classification methods. then employs a pre-defined sentence
template to form them into a description. This method is intu-
itive, but need to deal with the complex data. Meanwhile. the
limitation of sentence template cannot flexibly generate mean-
ingful sentences [5].

With the development of deep learning, recent work [5]-
[8], [18], [19] turn to employ neural network-based method to

Yung-Hsiang Lu, Purdue University

C. Yan et al., "STAT: Spatial-Temporal
Attention Mechanism for Video Captioning,"
in IEEE Transactions on Multimedia, vol. 22
no. 1, pp. 229-241, Jan. 2020, doi:
10.1109/TMM.2019.2924576.
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Table |. Related Work on Mobile CBIR

Paper Purpose Feature Search
Extracted
[Sonobe et al. 2004] recognize fish images server server
[Noda and Sonobe 2002] identify flowers server server
[Ahmad and Gabbouj 2005] | show feasibility of architecture | server server
[Yeh et al. 2004] identify monuments server server
[He et al. 2008] identify garments server server
[Chen et al. 2009] compress features client server
[Rohs and Gfeller 2004] identify color codes client client
[Yang et al. 2008a] implement mobile CBIR client client
[Zhu et al. 2009] retrieve images client clients
This article - save energy client/server | client/server

Karthik Kumar, Yamini Nimmagadda, and Yung-Hsiang Lu. 2012. Energy Conservation for Image Retrieval on Mobile Systems. ACM Trans.
Embed. Comput. Syst. 11, 3, Article 66 (September 2012), 22 pages. https://doi.org/10.1145/2345770.2345779

Yung-Hsiang Lu, Purdue University
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2 Background Ashish Vas_wani, Noam Shaz.eer, NiKki .Par.mar, Jakob Uszkoreit, LIion. Jones, Aidan N. Qomez,
tukasz Kaiser, lllia Polosukhin, Attention is All you Need, Advances in Neural Information
) Processing Systems 30 (NIPS 2017) )
The goal of reducing sequential computation also forms the foundation of the Extended Neural GPU

[20], ByteNet [15] and ConvS2S [8], all of which use convolutional neural networks as basic building
block, computing hidden representations in parallel for all input and output positions. In these models,
the number of operations required to relate signals from two arbitrary input or output positions grows
in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet. This makes
it more difficult to learn dependencies between distant positions [11]. In the Transformer this is
reduced to a constant number of operations, albeit at the cost of reduced effective resolution due
to averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as
described in section[3.2]

Self-attention, sometimes called intra-attention is an attention mechanism relating different positions
of a single sequence in order to compute a representation of the sequence. Self-attention has been
used successfully in a variety of tasks including reading comprehension, abstractive summarization,
textual entailment and learning task-independent sentence representations [4}/2211231[19].

End-to-end memory networks are based on a recurrent attention mechanism instead of sequence-
aligned recurrence and have been shown to perform well on simple-language question answering and
language modeling tasks [28].

Yung-Hsiang Lu, Purdue University 149



Techniques

Description and Deficiencies

Distances Between

Use the distances between the centroids of feature vectors to find

Feature similarity. All groups of categories lying within a radius of each other are
Vectors [41][42] | grouped. Difficult to determine the optimal radius.
Hierarchical Use the distances between the centroids of feature vectors to find
Clustering similarity. The k closest categories are grouped at every stage. Fixing the
[45]-[49] value k produces poor accuracy and degenerated hierarchies.
HSV and Gabor Use texture and color information from categories to find similarities. All

Features [50]

categories sharing the same color template or textures are grouped.
Images in the same category may have different colors and textures.

Semantic
Similarity[51]-[54]

Use semantic information {rom sources like WordNet to quantify the
similarity. Categories that share more semantic details are grouped
together. Semantic and visual similarities often do not correlate.

Use DNN's softmax output for a category, averaged over all input images

MNN-Tree belonging to other categories to find similarity. The softmax output is an
(Proposed Method) | indication of the confusion between categories. Categories that are
frequently confused are grouped together.
tanie 2. Different techniques to build hierarchies for image classification.

Yung-Hsiang Lu, Purdue University
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Description of Related Work

= State facts
= Acknowledge their contributions

= Take a positive tone (this method can be improved)
= Citing websites not always accepted

References

= Readers can study more details

= “References”, not “Prerequisites”

= Readers may check references first
= Must give strong positive impression

Yung-Hsiang Lu, Purdue University
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Conference or Journal
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Structure of a Research Paper

= Title, authors, affiliations

= Abstract (~150 words, 7 page)

= Introduction (15% of paper)

= (optional) Description of the problem, examples (5-10%)
= (optional) Settings of the problems (5%)

= Your solution (30-40%, depending on areas)

= Evaluation and comparison (20-40%)

= (Optional) Discussion (5-10%)

= Conclusion (~150 words, V4 page)

= References (10%, 2-3 x number of pages)

Yung-Hsiang Lu, Purdue University
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Solution (or Method)

Give a meaningful title (e.g., “Robots for Recycling” or
“Incentive for Recycling”, not “The Idea” or “The Method”)
Need to provide an overview of the section

Divide the section into subsections

Use figures to help readers understand

Yung-Hsiang Lu, Purdue University
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Advisable Learning for Self-Driving
Vehicles by Internalizing
Observation-to-Action Rules

Jinkyu Kim, Suhong Moon, Anna
Rohrbach, Trevor Darrell, John
Canny; Proceedings of the
IEEE/CVF Conference on
Computer Vision and Pattern
Recognition (CVPR), 2020, pp.
9661-9670
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Figure 1: Our model consists of four main parts: (1) an
object-centric visual encoder built upon a semantic segmen-
tation model, (2) an observation generator, which generates
textual observation about the scenes (“The road i1s wet”),
(3) an observation-to-action module. which maps a visual
scene description to a (high-level) action command (“Slow
down”), and (4) a vehicle controller conditioned on the gen-
erated action command.

Yung-Hsiang Lu, Purdue University
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How to find better solutions?

Reproduce results in papers Feature
List assumptions Method | 1 5 3 4
Test new data 1 v Py
Compare and mix methods , » »
Generalize or specialize . > y
Use new hardware
4 v
Read more papers
Yours 4 v v v

Solve “real world” problems
Research means re-search: If it is easy, it is not worth doing
Attend many seminars, talk to many people
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