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Tree Modular Neural Network Architecture
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Constructing The Hierarchy: Similarity Metrics
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Differences in Semantic and Visual Similarities
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Constructing the Hierarchy

Group 
Similar 

Categories

Select DNNs 
at Each Node Train DNNs

Small 
DNN

Large DNN

8



Yung-Hsiang Lu, Purdue University

Finding Visual Similarities
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Finding Visual Similarities
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Averaged Softmax Likelihood
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Neural Architecture Search To Find Neural Network Size
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Selecting DNN Sizes
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Training Tree Modular Neural Networks
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Tree Modular Neural Network Construction
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Hierarchy Constructed For CIFAR-10 Dataset
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Dataset Technique Model Size (KB) FLOPs Test Error

CIFAR-10

VGG 16 28,200 206 M 0.066

DenseNet 102,000 9,388 M 0.070

CondenseNet 43,000 1,024 M 0.034

MobileNet v2 8,800 100 M 0.060

This Method 806 28 M 0.079

ImageNet

VGG 16 528,120 15,300 M 0.295

ResNet-34 84,100 3,640 M 0.276

DenseNet 32,400 3,000 M 0.230

SqueezeNet 5,330 837 M 0.425

This Method 2,515 713 M 0.313
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Improvement in Energy Consumption
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Improvement in Inference Time
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Tree Modular Networks 
for Object Counting
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Object Counting
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Existing Object Counting Techniques
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Each region (red box) is processed by a large DNN.
Identify the object in each region.

Return the number of regions that contain humans.
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Tree Modular Neural Networks Increase Efficiency
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Identify Root-Leaf Path for Query
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Each region (red box) is processed by a small root DNN.
If region contains a living thing, process further; otherwise discard region.
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Different Paths for Different Queries
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If region contains a vehicle, process further; otherwise discard region.
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Hierarchy Constructed for PASCAL-VOC Dataset
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Comparison with Existing Techniques

27RMSE: Root Mean Squared Error
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Object Re-Identification
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Object Re-Identification
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Existing Object ReID Techniques
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Efficient Object ReID with Attribute Labels
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Tree Modular Neural Networks for Object ReID
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Neural Network Construction for ReID
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● Which attributes should be identified? Obtain 
attribute correlations.

● What order should they be identified? Quantify 
the difficulty of attribute identifications.
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Difficulty of Identifications: In Market 1501 dataset
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Feature vector of an image obtained 
with a pre-trained DNN
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Attribute Correlations
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Hierarchy Constructed for Market-1501
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Experimental Results
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Conclusions

● Tree Modular Neural Networks perform efficient image classification.
● Can be extended to object counting and re-identification applications.
● Accuracy-efficiency tradeoff exist.

SOURCE CODE:
https://github.com/abhinavgoel95/Modular_Neural_Networks
https://github.com/abhinavgoel95/Object-ReID-Hierarchical-Neural-Networks
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