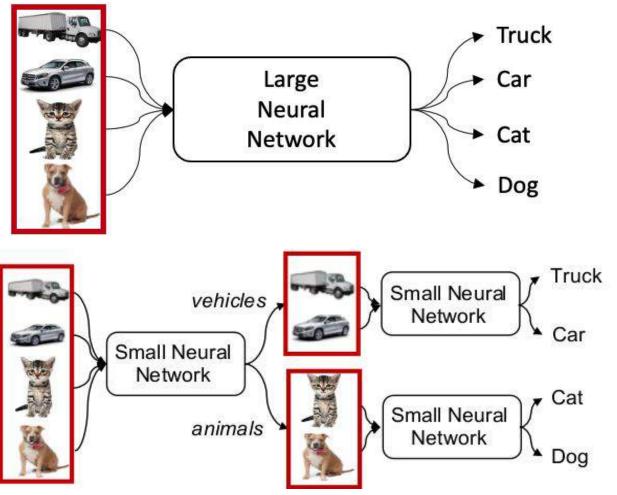
Computer Vision for Embedded Systems

Yung-Hsiang Lu Purdue University yunglu@purdue.edu

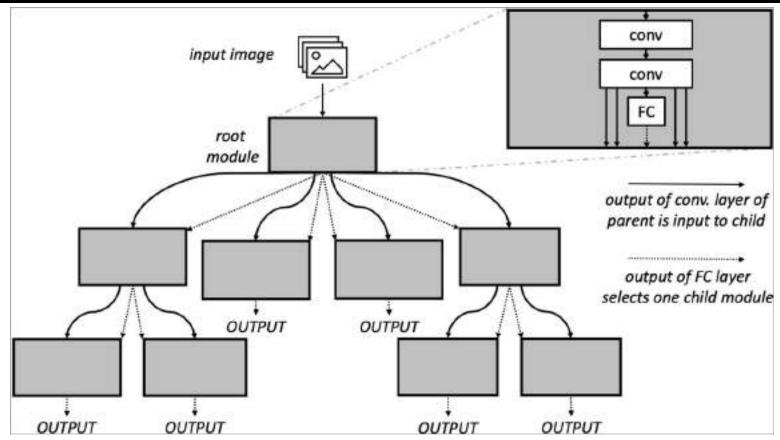
References

- Goel, et al., "Modular Neural Networks for Low-Power Image Classification on Embedded Devices", ACM Transactions on Design Automation of Electronic Systems, October 2020.
- Goel, et al., "Low-Power Multi-Camera Object Re-Identification using Hierarchical Neural Networks", ACM/IEEE International Symposium on Low Power Electronics and Design 2021
- 3. Goel, et al., "Low-Power Object Counting with Hierarchical Neural Networks", ACM/IEEE International Symposium on Low Power Electronics and Design 2020. Pages 163-168.
- 4. Goel, et al., "Efficient Computer Vision on Edge Devices with Pipeline-Parallel Hierarchical Neural Networks", Asia and South Pacific Design Automation Conference 2022

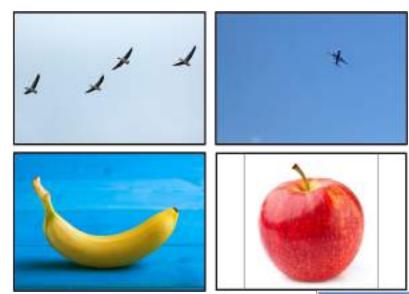
Abhinav Goel Purdue PhD 2022 now at Nvidia



Tree Modular Neural Network Architecture

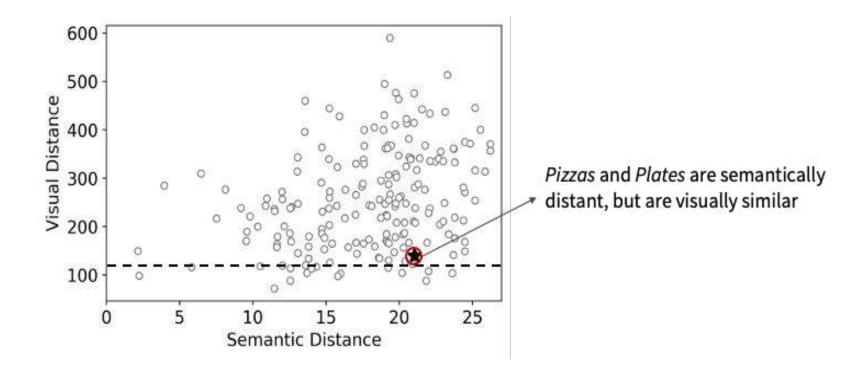


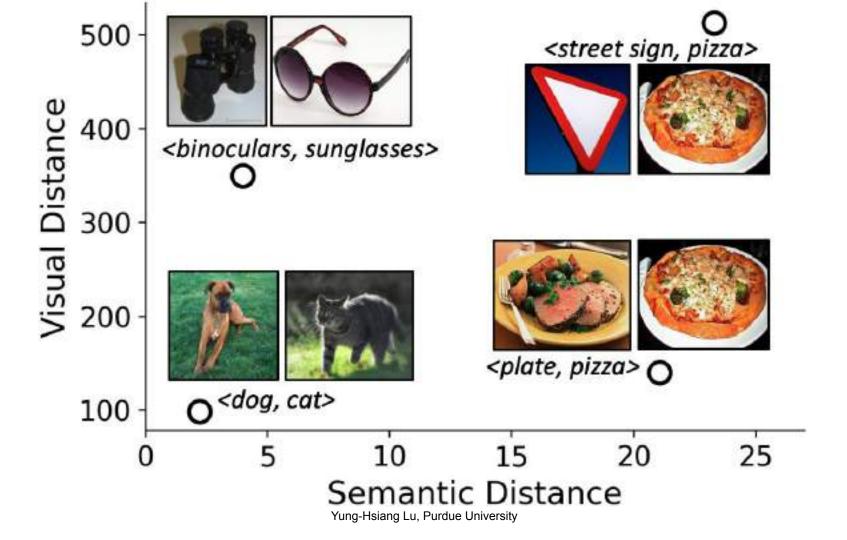
Constructing The Hierarchy: Similarity Metrics



Similarity	Example		Properties
Visual	Birds	Airplanes	In sky, have wings
Semantic	Banana	Apple	Fruit

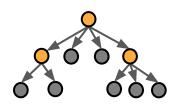
Differences in Semantic and Visual Similarities





Constructing the Hierarchy

Group Similar Categories

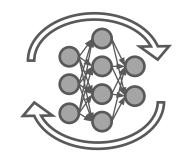


Select DNNs at Each Node

Large DNN

Small DNN

Train DNNs



Finding Visual Similarities

Randomly initialized DNN: Softmax outputs are approximately $\frac{1}{10}$

			/ \								
	Input	Airplane	Auto.	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck
Untrained	Cat	0.094	0.108	0.097	0.098	0.097	0.103	0.092	0.092	0.110	0.105
Untrained	Truck	0.099	0.103	0.098	0.101	0.107	0.101	0.104	0.105	0.092	0.086
Trained	Cat	0.011	0.026	0.103	0.303	0.105	0.200	0.102	0.104	0.010	0.032
Trained	Truck	0.060	0.193	0.018	0.024	0.017	0.022	0.012	0.041	0.060	0.550

10 categories in the CIFAR-10 dataset

Auto.

Truck

Cat

Finding Visual Similarities

Randomly initialized DNN: Softmax outputs are approximately $\frac{1}{10}$

	Input	Airplane	Auto.	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck
Untrained	Cat	0.094	0.108	0.097	0.098	0.097	0.103	0.092	0.092	0.110	0.105
Untrained	Truck	0.099	0.103	0.098	0.101	0.107	0.101	0.104	0.105	0.092	0.086
Trained	Cat	0.011	0.026	0.103	0.303	0.105	0.200	0.102	0.104	0.010	0.032
Trained	Truck	0.060	0.193	0.018	0.024	0.017	0.022	0.012	0.041	0.060	0.550

10 categories in the CIFAR-10 dataset

Trained DNN: Softmax outputs for certain categories increases after training

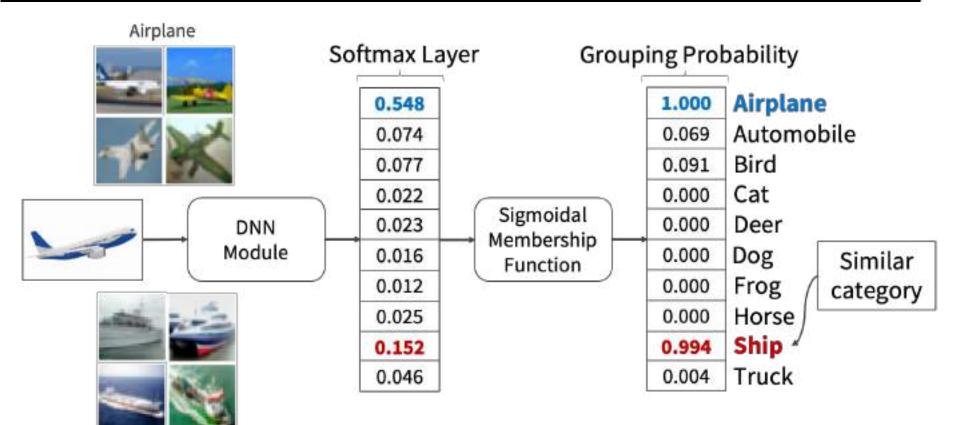
Auto.

Truck

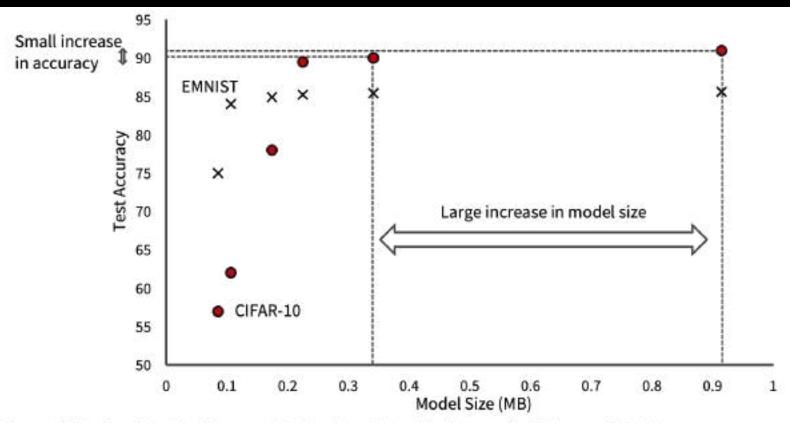
Cat

Averaged Softmax Likelihood

Ship

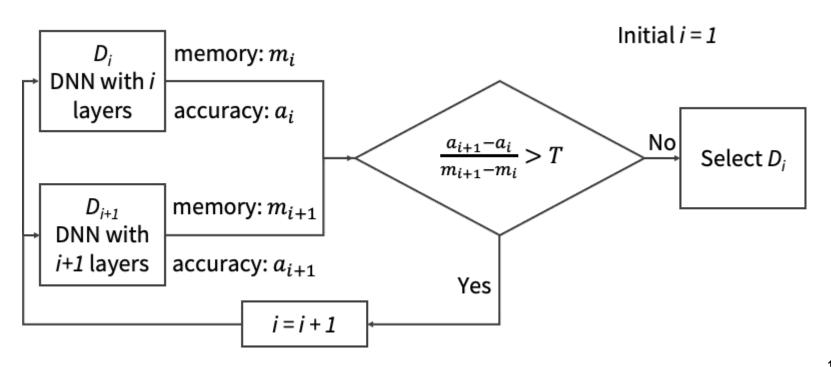


Neural Architecture Search To Find Neural Network Size

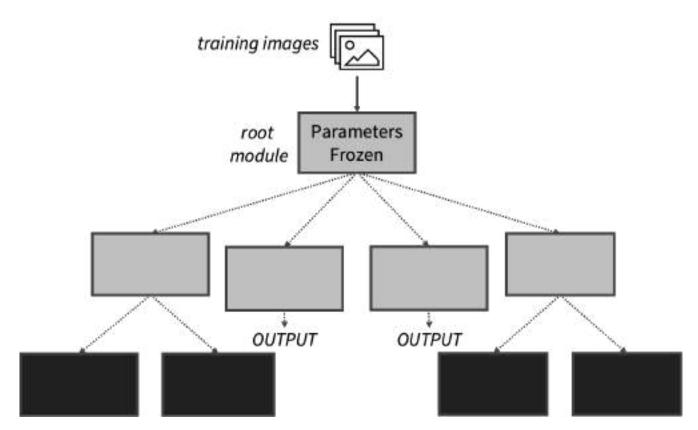


S. Bianco, et al. "Benchmark Analysis of Representative Deep Neural Network Architectures," in IEEE Access, vol. 6, 2018.
Yung-Hsiang Lu, Purdue University

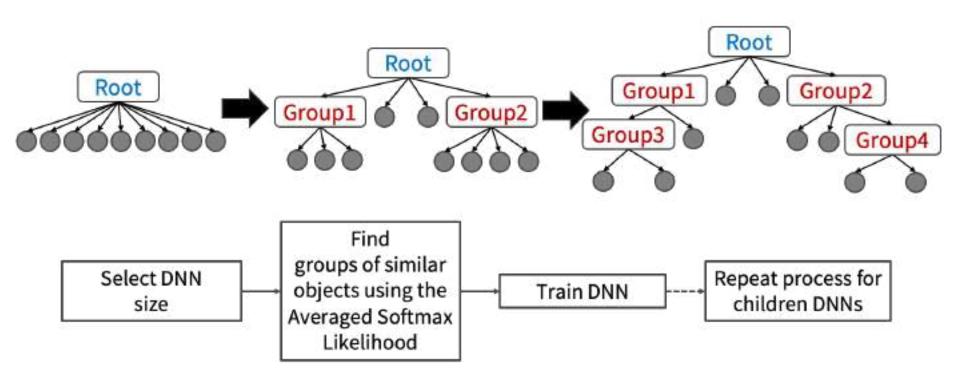
Selecting DNN Sizes



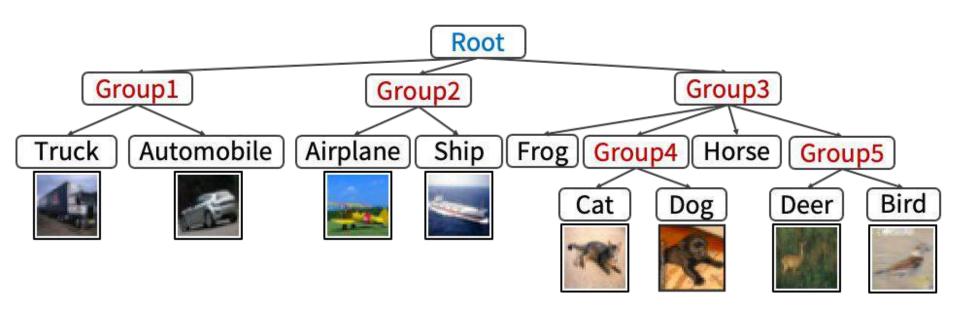
Training Tree Modular Neural Networks



Tree Modular Neural Network Construction

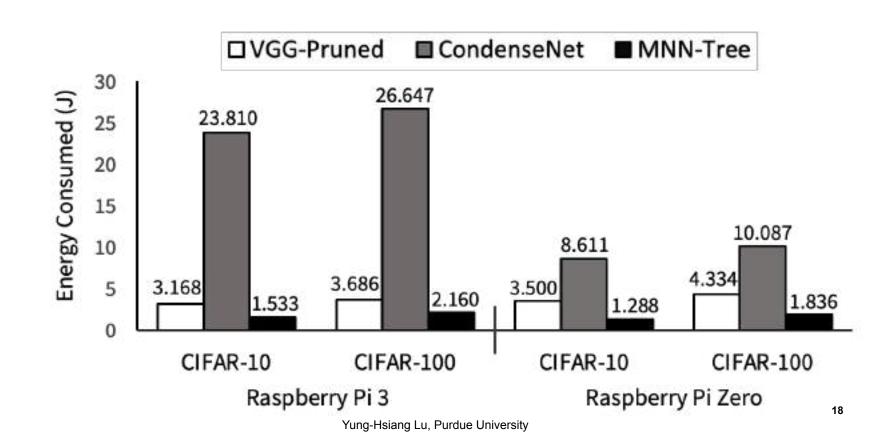


Hierarchy Constructed For CIFAR-10 Dataset

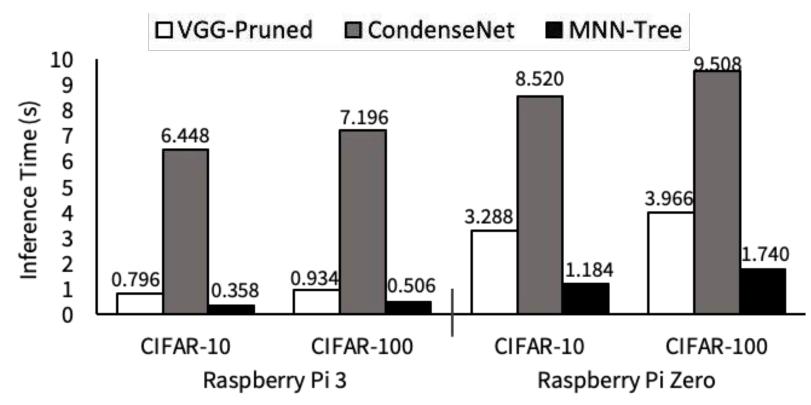


Dataset	Technique	Model Size (KB)	FLOPs	Test Error
	VGG 16	28,200	206 M	0.066
	DenseNet	102,000	9,388 M	0.070
CIFAR-10	CondenseNet	43,000	1,024 M	0.034
	MobileNet v2	8,800	100 M	0.060
	This Method	806	28 M	0.079
	VGG 16	528,120	15,300 M	0.295
	ResNet-34	84,100	3,640 M	0.276
ImageNet	DenseNet	32,400	3,000 M	0.230
	SqueezeNet	5,330	837 M	0.425
	This Method	2,515	713 M	0.313

Improvement in Energy Consumption

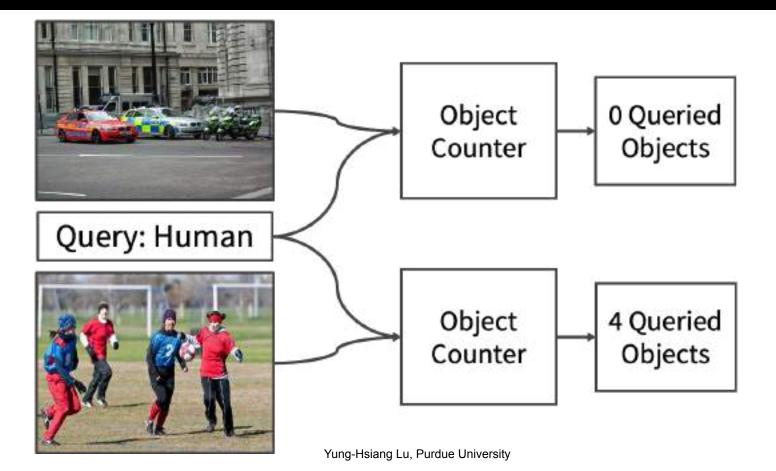


Improvement in Inference Time

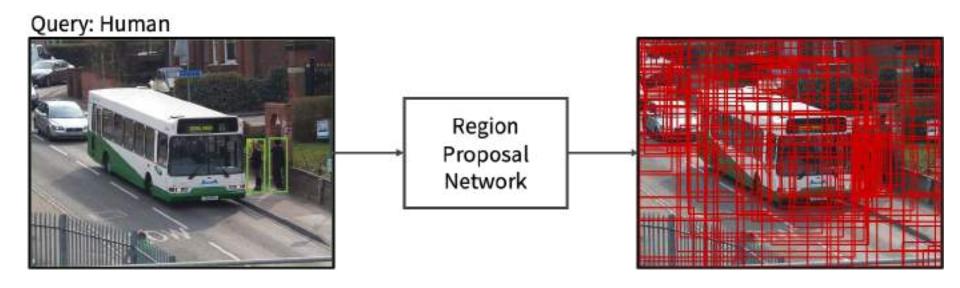


Tree Modular Networks for Object Counting

Object Counting



Existing Object Counting Techniques

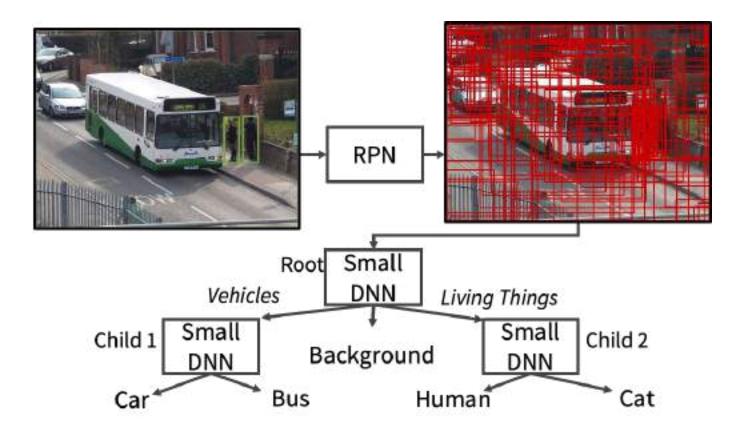


Each region (red box) is processed by a large DNN.

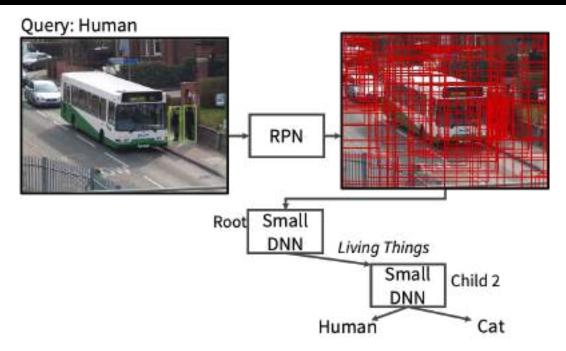
Identify the object in each region.

Return the number of regions that contain humans.

Tree Modular Neural Networks Increase Efficiency



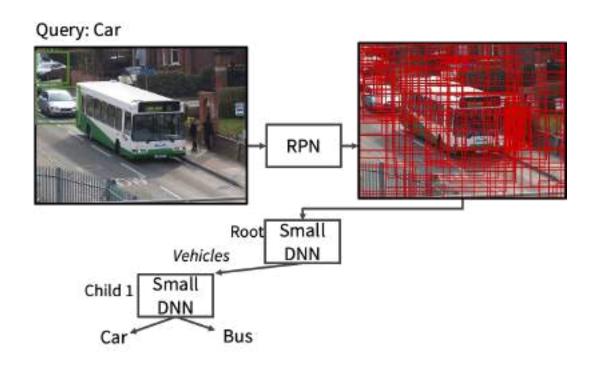
Identify Root-Leaf Path for Query



Each region (red box) is processed by a small root DNN.

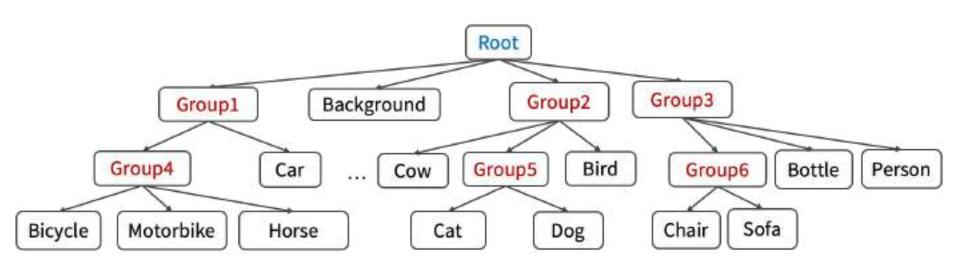
If region contains a living thing, process further; otherwise discard region.

Different Paths for Different Queries



If region contains a vehicle, process further; otherwise discard region.

Hierarchy Constructed for PASCAL-VOC Dataset



Comparison with Existing Techniques

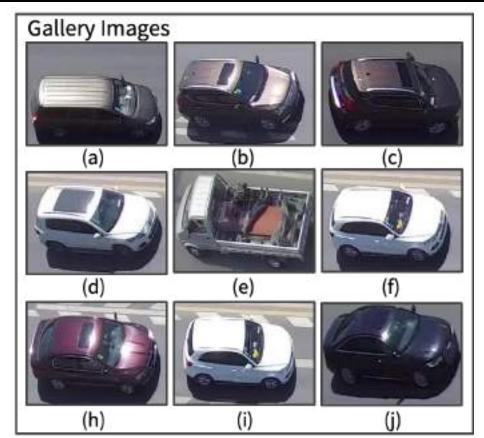
Dataset	Technique	Model Size (MB)	FLOPs	Test RMSE
	Faster RCNN	1,100	440 B	1.38
	YOLO v3	248	141 B	1.61
Pascal	Tiny YOLO	55	5 B	2.32
voc	LC-FCN	194	156 B	1.20
	Semantic Tree	16	41 B	2.56
	This Method	16	42 B	1.80
	Faster RCNN	1,100	440 B	1.99
	YOLO v3	249	141 B	2.07
coco	Tiny YOLO	56	5 B	3.01
	Semantic Tree	20	44 B	3.51
	This Method	19	44 B	2.24

Metric	YOLOv3	Tiny YOLO	Proposed Method
Inference Time (sec/img)	22.33	1.25	1.02
Energy Consumption (J/img)	162.00	9.90	8.10

RMSE: Root Mean Squared Error

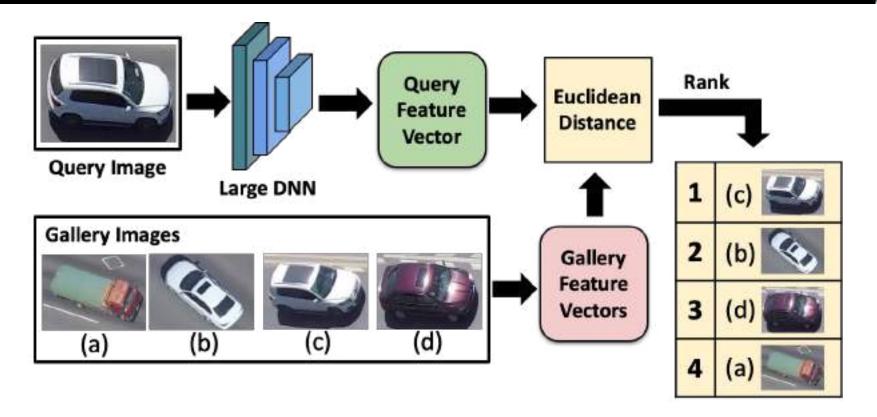
Object Re-Identification

Object Re-Identification



Yung-Hsiang Lu, Purdue University

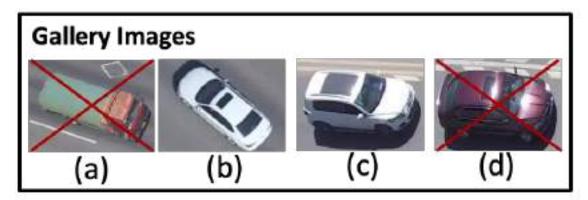
Existing Object ReID Techniques



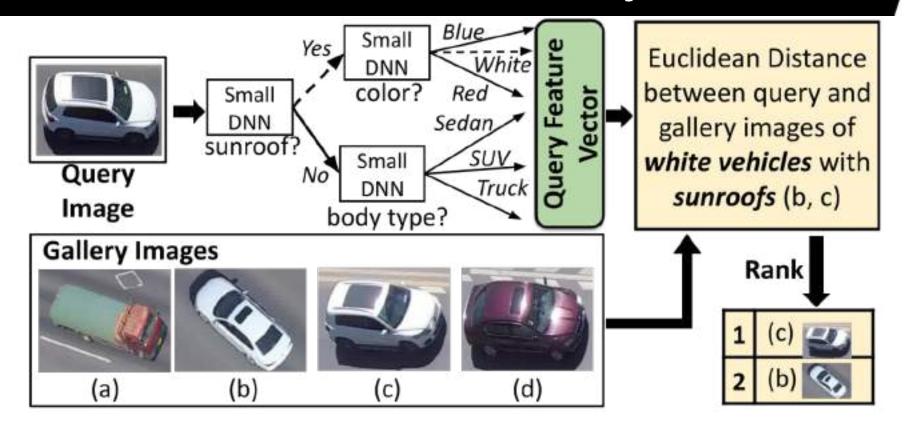
Efficient Object ReID with Attribute Labels

A white car with a sunroof

Query Image



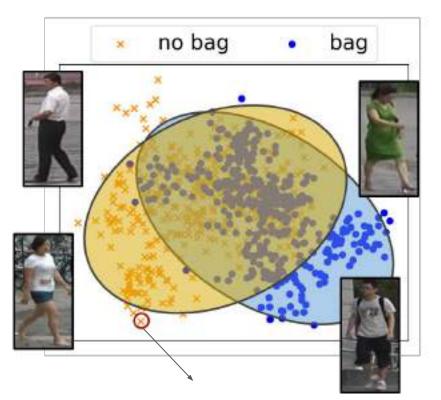
Tree Modular Neural Networks for Object ReID



Neural Network Construction for RelD

- Which attributes should be identified? Obtain attribute correlations.
- What order should they be identified? Quantify the difficulty of attribute identifications.

Difficulty of Identifications: In Market 1501 dataset

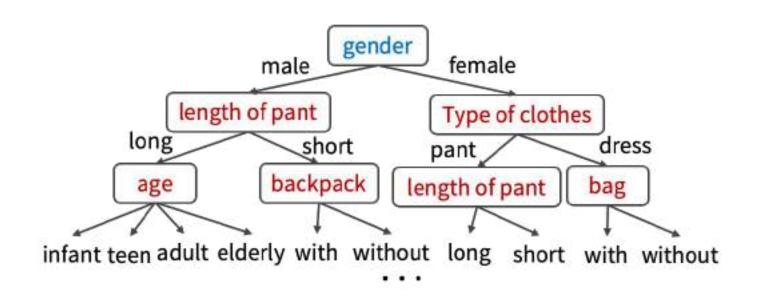


Feature vector of an image obtained with a pre-trained DNN

Attribute Correlations

	Male	Female	Long hair	Backpack	Dress	Short sleeve	Teen	Shoulder bag	Long pant
Male	1.00	0.00	0.01	0.30	0.00	0.97	0.73	0.10	0.44
Female	0.00	1.00	0.75	0.22	0.34	0.91	0.79	0.13	0.33
Long hair	0.02	0.98	1.00	0.23	0.37	0.90	0.85	0.13	0.31
Backpack	0.64	0.36	0.28	1.00	0.11	0.95	0.96	0.00	0.31
Dress	0.00	1.00	0.83	0.20	1.00	0.90	0.78	0.14	0.14
Short sleeve	0.59	0.41	0.31	0.27	0.14	1.00	0.76	0.09	0.39
Teenager	0.55	0.45	0.37	0.34	0.15	0.95	1.00	0.08	0.30
Shoulder bag	0.35	0.65	0.48	0.00	0.82	0.94	0.74	1.00	0.64
Long pant	0.65	0.35	0.26	0.21	0.05	0.94	0.57	0.09	1.00

Hierarchy Constructed for Market-1501



Experimental Results

Dataset	Technique	Model Size (MB)	FLOPs	Rank-1	mAP
	RAM-VGG	528	15,483 M	0.720	0.573
	Multi-Task	351	11,172 M	0.803	0.786
VRAI	DenseNet	77	4,340 M	0.671	0.700
	Random Tree	25	2,026 M	0.631	0.585
	Proposed 14	1,082 M	0.781	0.737	
	Pyramidal	184	9,757 M	0.928	0.821
	Auto ReID	55	2,050 M	0.938	0.834
Market-	DG-Net	101	4,029 M	0.896	0.745
1501	Random Tree	257	1,736	0.788	0.535
	DenseNet 77 4	808 M	0.885	0.699	

	0.0000000000000000000000000000000000000	berry B+	NVIDIA Jetson Nano		
	Query Time (s)	Energy (J)	Query Time (s)	Energy (J)	
DenseNet	140	12	2.55	18.18	
DARE	11.41	55.83	1.09	7.92	
Random Tree	4.39	19.83	0.77	5.72	
Proposed Method	2.13	10.33	0.35	2.70	

Conclusions

- Tree Modular Neural Networks perform efficient image classification.
- Can be extended to object counting and re-identification applications.
- Accuracy-efficiency tradeoff exist.

SOURCE CODE:

https://github.com/abhinavgoel95/Modular_Neural_Networks

https://github.com/abhinavgoel95/Object-ReID-Hierarchical-Neural-Networks