Computer Vision for
Embedded Systems

Yung-Hsiang Lu
Purdue University
yunglu@purdue.edu

PURDUE

UNIVERSITY

Yung-Hsiang Lu, Purdue University

Reduce Network Sizes

e Reduce #bits for each parameter
e Remove unused connections between layers

e Remove inactive neurons

64-bit floating point

32-bit floating point

16-bit floating point

16-bit fixed point

More memory

8-bit fixed point

8-bit integer

4-bit integer

Execution time

Lower Precision
Accuray

Yung-Hsiang Lu, Purdue University

]

Benefits of Quantization

Reduced memory footprint
Sparse weights

Faster inference time
Regularization

Better cache performance

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, Xiaotong Zhang, Pruning and quantization for deep neural network acceleration: A survey,
Neurocomputing, Volume 461, 2021, Pages 370-403, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2021.07.04

Yung-Hsiang Lu, Purdue University

Sparsity

e Definition: % of weights that are equal to 0

e Benefit: Specialized hardware/software can make computations
faster given sparse data
Fast Sparse Matrix Multiplication
https://www.cs.tau.ac.il/~zwick/papers/sparse.pdf

Processing 20.7ms (48 FPS) Processing 18.8ms (53 FPS)
i - 5 =

A 3 ur
Dense Model Sparse Model

Yung-Hsiang Lu, Purdue University

https://www.cs.tau.ac.il/~zwick/papers/sparse.pdf

32-bit Floating Point

sign exponent (8 bits) fraction (23 bits)
| | I n

oflol1]1{1|1]/1|o0|o]o|1|olo|o|l0|0|O|O|0O|O|O|O|O|O|O(O|O|O|O|0O|OI0O] = 0.15625

31 30 2322 (bit index) 0

e sign: O positive, 1 negative

e 38-bit exponent: e - 127. 01111100 = 124 = 2124-127 = 9-3
e 1 + fraction. 0100 = 22

o 23x1.25=0.15625

wikipedia.org

Yung-Hsiang Lu, Purdue University

Adding Two Floating Point Numbers

How to add 3.75 and 5.125 to get 8.875?

3.75=1.875x2=(1+0.875)x2
0.875=05+0.25+0.125=2"1+22+ 23
5.125=1.28125x 22 = (1 + 0.28125) x 22
0.28125=0.25+0.03125 =22+ 2°

A. make them have the same exponent
B. add the fraction

C. convert back to the correct format

Yung-Hsiang Lu, Purdue University

64-bit Floating Point

exponent fraction

sign (11 bit) (52 bit)
| Il |
o o) o
63 52 0

e sign: O positive, 1 negative
e 11-bit exponent: e - 1023.
e 1 + fraction

wikipedia.org

Yung-Hsiang Lu, Purdue University

Quantization is lossy mapping

32-bit floating point as large as 2%’ >> 255 in 8-bit integer

2127 _2127

N /

255 0

127 -128

In reality, neural networks' weights are rarely too large

Yung-Hsiang Lu, Purdue University

(a) ResNet-50 Weight Histogram (b) Inception-v3 Weight Histogram

105 Max Weight: 1.32 | 105] Max Weight: 1.27
Min Weight: -0.78 % Min Weight: -1.20
10¢ 104
> ?
210° 103!
o |
> !
g 102 102!
T i
10! 10"}
100 100} ;
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
weight value weight value
: (c) DenseNet-201 Weight Histogram : (d) Transformer Weight Histogram
5
10° Max Weight: 1.33 | 107 Max Weight: 20.41
4 Min Weight: -0.92 106 Min Weight: -12.46
1044
1051
310° 4
5 10
5102 102
(T 2
10! 10
] 10!
0
e i , . 1 10% 44 g e &b g
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
weight value weight value
AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference, https://arxiv.org/abs/1909.13271 9

Yung-Hsiang Lu, Purdue University

Quantization as Linear Mapping

floating point 0 € [Qj’ ﬂ] integer X, € [(yq’ 5(1]
- 4 §
r=clzyz+d) zq= [; — d]
a=clag+d) p=c(By;+d
C = | d = QIB(I /30“(]

'Bq m C.Yq zero point d —

https://leimao.github.io/article/Neural-Networks-Quantization/

Yung-Hsiang Lu, Purdue University

Method
Dynamic Quantization
Static Quantization

Quantization Aware
Training

Inference Latency | Accuracy Lose | Training Data

Usually faster Small No need
Faster Larger Unlabeled
Faster Small Labeled

1"
Yung-Hsiang Lu, Purdue University

Post-training Static Quantization Overview

trained
32-bit floating point model

4

Map weights, biases to 8-bit integers

4

trained
8-bit integer model

Calibrate layer outputs using a dataset
representative of the target domain

l

Per-layer calibration data

During inference, the smaller 8-bit model and the calibration
data are used to perform quantized operations

Unfortunately, this can result in

significant loss of accuracy

Vincent Vanhoucke, Andrew Senior, & Mark Z. Mao (2011). Improving the speed of neural networks on CPUs. In Deep
Learning and Unsupervised Feature Learning Workshop, NIPS 2011.

12
Yung-Hsiang Lu, Purdue University

Quantization-Aware Training Overview

Forward pass Backwards propagation
Round all floating-point Use floating-point arithmetic
weights, biases, and as usual

activations to the nearest

quantized integer This way, weights can still be adjusted

incrementally, while influenced by the
quantized forward pass

This still produces a 32-bit floating-point model. However, the weights and
biases should now be much more amenable to static quantization, resulting
in higher-accuracy than post-training static quantization.

B. Jacob et al., "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018, pp. 2704-2713, doi: 10.1109/CVPR.2018.00286.
13

Yung-Hsiang Lu, Purdue University

32 bits to 8 bits: Example MatMul Layer

Let’'s say we have a matrix multiplication layer for fp32 tensors input X and

weight W. It'll give us output O (note, SF: scale factor, ZP: zero point). You

could do similar stuff for Conv2D and Linear layers.

Ofpzz = Xppaz X M/f;:32

SFO.fp'jZ(OintS = ZPO,intB) - SF.\’,[p'jZ(Xint.B oy ZPX,inl.S) X SFL‘.",]'])L%Z(WM!B — ZPW.mtB)

Oints = (3'1",’(,/‘;932()(5;”3 = ZPX,m(.B) X Sl"w.l'mz(wmzs = ZPW,mtB))

All this math is done using only quantized
tensors, scale factors, and zero points. No
massive FP32 tensors

how do we know the
scale factor and zero
point for O?

Yung-Hsiang Lu, Purdue University

14

32 bits to 8 bits: Quantizing an entire NN

1. Do calibration on multiple

images from dataset

fp32 input

l

fp32 Convad

Use avg mins,
maxes to get A’s
SF and ZP

2. Quantize weights and biases

[

p—

outputA —— 1

Store output A>/1in,
MAX

fp32 Linear 1
—

outputB ———

Store output B
min, MAX I~

fp32 Linear 2

fp32 output

—

Use weight/bias mins
and maxes to calculate
SF’s and ZP'’s to get
quantized weight/bias

fp32 Conv2d

>

fp32 Linear 1

Use avg mins,
maxes to get B’s
SF and ZP

Yung-Hsiang Lu, Purdue University

fp32 Linear 2

15

32 bits to 8 bits: Quantized Inference

fp32 in% quantize input to INT8

l

fp32 Conv2d

Calculate Oints

output A

fp32 Linear 1

output B \

fo32 Linear 2 Dequantize to FP32

Calculate Oints

fp32 output

16
Yung-Hsiang Lu, Purdue University

Post-Training Static
Quantization Assignment

Yung-Hsiang Lu, Purdue University

Google Colab

Only need to use a CPU runtime in Colab

Notebook settings

Hardware accelerator
None

Omit code cell output when saving this notebook

Cancel

Yung-Hsiang Lu, Purdue University

Get setup

- Setup

TASKS:

1. Run thess cofa 10 grob the PyPl packages and import the dependencies Tor the notebook. You can cick into the ‘Files

saplorer on the sidebar sa-canfirm that : { sitierParame.pt WES Appropriately daownitaded

sitberParass.p

ok 20 MM

Yung-Hsiang Lu, Purdue University

Check out the ClassyClassifier

CLASSY CLASSIFIER PARAMMETERS FILENAME =

__jntt__(:pfi]'
super(). Iinit

iT.layerl_cony nn.Conv2d(in_channels=3, out_channels=16,

Xernel _sizesS, stride=1)
nn.MaxPool2d(kernel size=2, stride=2)
nn . Conv2d(in channels=16, out chann 32, kernel size=5, stride=1)
= nn.MaxPoal2d(kernel size=2, stride=2)
- nn.Flatten()
. Linear(in foatures=580, out featu
= nn.Linear(in_features=128, out_features=E
nn, Linear(in_features=84, oul_features=1@)
forvard(selt, torch.Téensor):
X = F.relu(self.layerl conv(x))
X = self.layer2_pool(x)
x relu(self,layer3 _convix))
layerd pool(x)
5 _fFlat(x)
1¥. layere_fc(x))
F.relu{self,layer7 fc(x))

self.layers8 fc(x)

Yung-Hsiang Lu, Purdue University

Quantizing by hand...

Quantization formula

To quantize a tensor, you need
to use its min and max values
to calculate the scale factor
and zero point.

Values,s, = ScaleFactors,s, X (Valuejg — ZeroPointiyg)
Generate this And this

|

To calculate this

21
Yung-Hsiang Lu, Purdue University

Quantization helper functions

Helper functions to calculate scalefactor/zeropoint, quantize/dequan]

Read the docstrings
Complete the #TODOs
e Four 1-line #TODOs

° calculate scalefactor and zercpoint(edn val: float, max val: float) -> Tuplyl

INTE_MIN
INTB MAX

Yung-Hsiang Lu, Purdue University

Technically, this is pseudo-quantization

Yes, we still store as
FloatTensors.
But these tensors are still

arithmetic!

integers, in range [0, 255]. The
point is to learn quantization

You will use torch. fx later
to perform real quantization.

Yung-Hsiang Lu, Purdue University

23

Fill out QuantizedLayer

1. Constructor should call quantize tensor() to get int8 weights/biases with
scale factors and zero points

2. run_quantized layer uses the int8 tensors along with their scale factors and
zero points to calculate the floating point output. The floating point output is
converted to int8 using some precalculated scalefactor and zero point

Again, remember that this is to learn the math. Real hardware implements this
symbolically and much quicker!

Tip: refer to the “Example MatMul Layer” slide in the Quantization lecture slide
deck to see how the math works

Read the docstrings
Complete the #TODOs

Yung-Hsiang Lu, Purdue University

24

Fill out QuantizerForClassyClassifier

Calibration requires that, for each image batch, you store the min/max of each
layer’s output (i.e. the preceding layer’s input) in lists.

Once this is done, you can average the lists and use the average min/max to
calculate scalefactors and zero points (remember, these are needed as
parameters for QuantizedLayer.run_quantized_layer())

l \We've done the first layer for you!

25

Yung-Hsiang Lu, Purdue University

Fill out QuantizerForClassyClassifier

Yung-Hsiang Lu, Purdue University

Accuracy should be similar!

Run the cells.
Your output should look like this image

plasw

SELDO-QUANTIZED KETMORK snhould match original neural network ol
plane frog

27
Yung-Hsiang Lu, Purdue University

Trying out a real quantization library

Run the cells.
Your output should look like this image

ACCURACY » Note that accuracy remains similar, but the

ol e ar s tar ol FX-Quantized network is much smaller than the
Accuracy: 0.687, 6874 correcfelgle[iF:I1l.

Model Size (kB): 539.1

FX-QUANTIZED ClassyClassifier:

Accuracy: 9.699, 6901 correct/10000 total images

Model Size (kB): 160.4
PSEUDO-QUANTIZED ClassyClassifier:
Accuracy: 9.689, 6890 correct/1ee8e total images

28
Yung-Hsiang Lu, Purdue University

