Course Textbook and Background

- Power Electronics by Daniel W. Hart

Supplementary Textbooks:

- Fundamentals of Power Electronics by Erickson
- Power Electronics by Ned Mohan

- Required/Assumed Background
 - Analog Circuits
 - Basic Control Theory
 - Semiconductor Devices (Basic)
Definition

- Power electronics is an interdisciplinary field interrelated to all of the major disciplines of electrical engineering.

Source: Elements of Power Electronics by P. Krein
Definition

- Power electronics refers to the study of electronic circuits which efficiently process and transfer the electric power using semiconductor switching devices.
Conversion Types

Block Diagram of a Power Electronics-Based System

- DC-DC Conversion
- AC-DC Rectification
- DC-AC Inversion
- AC-AC Cycloconversion
Power Electronics for Portable Electronic Devices

Source: Texas Instruments and Apple
Power Electronics for Battery Chargers

Ref: Erickson et. al., APEC 2009
Power Electronics for Transportation: HEV and EV

Ref: “Development of small size Power Control Unit,” Hironaka et. al., EVS 2006
Power Electronics for Transportation: Traction System

Ref: “Medium Frequency Transformer for Traction Applications making use of Multilevel Converter: Small Scale Prototype Test Results,” Carpita et. al., SPEEDAM 2006
Power Electronics for Transportation: More Electric Aircraft
Power Electronics for Solid State Lighting

- Outdoor
- General ambient lighting
- Automotive
- Other
 - Backlighting in LCD TVs, laptop screens, mobile phones
 - Sinages
 - Flash lights and camera flashes
Power Electronics for Solid State Lighting
Power Electronics for Power Transmission: HVDC System
Other Applications of Power Electronics

- Mechatronics and Robotics
- All Electric Ships
- Grid Integration of Distributed Energy Resources (Fuel Cells, Micro-turbine Generators, Photovoltaic Panels, Tidal Energy Generators, Wind Turbines) and Energy Storage Devices
Considerations for the Design of Power Electronic Converters

- Efficiency
- Size and Weight
- Performance in Terms of Power Quality and Harmonic Content
Components Available to the Circuit Designers

Resistors Capacitors Magnetics Linear-mode Switched-mode
Semiconductor devices
An Essential Requirement for Conversion: Efficiency

- An important goal of converter technology is to construct converters of small size and weight, which process substantial power at high efficiency.

\[P_{in} \rightarrow \text{Power Converter} \rightarrow P_{out} \]

- Efficiency is defined as: \(\eta = \frac{P_{out}}{P_{in}} \)

\[P_{loss} = P_{in} - P_{out} \]

- Efficiency Target: \((P_{loss} \rightarrow 0) \Rightarrow (\eta \rightarrow 100\%) \)
Components Available for Lossless Power Processing

Resistors
Capacitors
Magnetics

linear-mode
Semiconductor devices

switched-mode
Power Loss in an Ideal Switch

Switch closed: \(V_{\text{switch}} = 0 \)

Switch open: \(I_{\text{switch}} = 0 \)

In either case: \(P_{\text{switch}} = V_{\text{switch}} I_{\text{switch}} = 0 \)
Design of Power Electronic Converters

Design of power electronic converters involves:

- Design of power circuits
- Determination of control strategy and generation of gating signals
- Protection of switching power devices
- Design of logic and gating circuits
Course Topics

1. Introduction
2. DC-DC Converters
3. Rectifiers
4. Inverters
5. Interfacing Issues for Power Semiconductor Devices
6. Design of Components
Course Objectives

This course provides:

- An understanding of various AC-DC, DC-AC, and DC-DC converter circuits and principles of their operation
- A knowledge of the basic characteristics of switch types
- A knowledge of switching techniques and control of AC-DC, DC-AC, and DC-DC converters
- A knowledge of sizing of the switching and energy storage elements in AC-DC, DC-AC, and DC-DC converters
ECE 433: Simulation Tools

- Simpower Systems Toolbox
Marking Scheme

- Homework (5%)
- Projects (15%) – Three projects
- Quizzes (15%) – First Quiz: January 30
- Exams:
 i) Exam I (15%) – February 21
 ii) Exam II (15%) - March 28
 iii) Final Exam (35%)
- Office Hours: Wednesday and Friday 4:30 - 5:20 PM
Course Information

- **Course TA: Jaya Deepti Dasika**
 Office: EE57
 Email: jdasika@purdue.edu
 Office Hours: Monday and Tuesday 4:30 -5:30 PM at EE57

- **Course Website:**
 https://engineering.purdue.edu/Courses/ECE433
Course Grading Policy

- Letter grades will be determined by the following guidelines:
 - ≥ 90% A
 - ≥ 80% B
 - ≥ 70% C
 - ≥ 60% D
Makeup Sessions

- I will be away on January 23, 25 and Feb. 1.
- We will have the following makeup sessions:
 - Monday, Jan. 14 (6:00-7:10), Location: TBD
 - Monday, Jan. 28 (6:00-7:10), Location: TBD
Course Information

- **Course TA:** Jaya Deepti Dasika
 Office: EE57
 Email: jdasika@purdue.edu
 Office Hours: Monday and Tuesday 4:30 -5:30 PM at EE57

- **Course Website:**
 https://engineering.purdue.edu/Courses/ECE433
QUESTIONS?