Courses List
https://engineering.purdue.edu/online/courses/list
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Read More…
Air Breathing Propulsion
Analysis of operating characteristics of turbojet, turbofan, turboshaft, afterburning, and ramjet propulsion systems. Analysis and design of inlet, diffuser, combustor, compressor, turbine, nozzle. Component matching and off-design performance for steady-state and transient operating lines. Inlet distortion, nozzle-afterbody, and installation losses.
https://engineering.purdue.edu/online/courses/air-breathing-propulsion
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Analysis of operating characteristics of turbojet, turbofan, turboshaft, afterburning, and ramjet propulsion systems. Analysis and design of inlet, diffuser, combustor, compressor, turbine, nozzle. Component matching and off-design performance for steady-state and transient operating lines. Inlet distortion, nozzle-afterbody, and installation losses.
Read More…
Introduction to Fluid Mechanics
The basic conservation equations are derived for a compressible viscous fluid and then are specialized for applications in potential flow, viscous flow, and gas dynamics.
https://engineering.purdue.edu/online/courses/introduction-fluid-mechanics
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
The basic conservation equations are derived for a compressible viscous fluid and then are specialized for applications in potential flow, viscous flow, and gas dynamics.
Read More…
Computational Aerodynamics
This course provides an introduction to finite-difference (FD) and finite volume (FV) methods in CFD. The course is divided into three parts. Part 1 reviews the building blocks needed to develop, analyze, and implement CFD, including methods for initial and boundary-value problems, methods for linear and nonlinear algebraic equations, classification and properties of partial differential equations (PDEs), and the equations that govern fluid mechanics, heat transfer, and combustion problems. Part 2 presents FD and FV methods in a step-by-step manner, showing how the building blocks are assembled and their limitations. These include mapping of coordinate systems, grid generation, FD and FV operators, and methods of analysis for consistency, stability, convergence, and errors such as conservation, transportive, dissipation, dispersion, aliasing, and lack of monotonicity and positivity. Part 3 shows how FD and FV methods are applied to the Euler and the Navier-Stokes equations for compressible and incompressible flows with focus on boundary conditions, verification and validation issues, and uncertainty quantification.
https://engineering.purdue.edu/online/courses/computational-aerodynamics
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
This course provides an introduction to finite-difference (FD) and finite volume (FV) methods in CFD. The course is divided into three parts. Part 1 reviews the building blocks needed to develop, analyze, and implement CFD, including methods for initial and boundary-value problems, methods for linear and nonlinear algebraic equations, classification and properties of partial differential equations (PDEs), and the equations that govern fluid mechanics, heat transfer, and combustion problems. Part 2 presents FD and FV methods in a step-by-step manner, showing how the building blocks are assembled and their limitations. These include mapping of coordinate systems, grid generation, FD and FV operators, and methods of analysis for consistency, stability, convergence, and errors such as conservation, transportive, dissipation, dispersion, aliasing, and lack of monotonicity and positivity. Part 3 shows how FD and FV methods are applied to the Euler and the Navier-Stokes equations for compressible and incompressible flows with focus on boundary conditions, verification and validation issues, and uncertainty quantification.
Read More…
Intermediate Aerodynamics
The course objective is to increase student understanding of airfoil and wing aerodynamics and compressible flow beyond the undergraduate level. A deeper understanding of the analytical background in each topic is sought based on the expectations of graduate level mathematical ability and a solid background in elementary fluid mechanics and thermodynamics.
https://engineering.purdue.edu/online/courses/intermediate-aerodynamics
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
The course objective is to increase student understanding of airfoil and wing aerodynamics and compressible flow beyond the undergraduate level. A deeper understanding of the analytical background in each topic is sought based on the expectations of graduate level mathematical ability and a solid background in elementary fluid mechanics and thermodynamics.
Read More…
Hypersonic Aerothermodynamics
Aerodynamics of satellites and planetary re-entry. Continuum hypersonic flow. Inviscid and viscous effects, boundary layers, and heat transfer. Shock and boundary-layer interactions. Equilibrium flow of high-temperature reacting gases. Nonequilibrium effects. Kinetic theory and rarefied flows. Direct simulation Monte Carlo techniques.
https://engineering.purdue.edu/online/courses/hypersonic-aerothermodynamics
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Aerodynamics of satellites and planetary re-entry. Continuum hypersonic flow. Inviscid and viscous effects, boundary layers, and heat transfer. Shock and boundary-layer interactions. Equilibrium flow of high-temperature reacting gases. Nonequilibrium effects. Kinetic theory and rarefied flows. Direct simulation Monte Carlo techniques.
Read More…
Introduction to Remote Sensing
This course will introduce students to key aspects of the design of satellite systems for Earth observation (EO). We will start by identifying the physical quantities that need to be measured in order to understand changes in the Earth's atmosphere, land surfaces and oceans. These parameters will be compared with the various phenomenologies that enable them to be measured remotely from space. Next, we will look at the design of instruments and satellite systems around these principles. Microwave instruments will be emphasized, although there will also be discussion of optical systems. This course is intended equally for students in Engineering or the Sciences.
https://engineering.purdue.edu/online/courses/introduction-remote-sensing
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
This course will introduce students to key aspects of the design of satellite systems for Earth observation (EO). We will start by identifying the physical quantities that need to be measured in order to understand changes in the Earth's atmosphere, land surfaces and oceans. These parameters will be compared with the various phenomenologies that enable them to be measured remotely from space. Next, we will look at the design of instruments and satellite systems around these principles. Microwave instruments will be emphasized, although there will also be discussion of optical systems. This course is intended equally for students in Engineering or the Sciences.
Read More…
Orbit Mechanics
Natural behavior of planets and moons in the solar system as well as spacecraft motion: orbit dynamics, perturbations, and stability; trajectory control, on-orbit maneuvers, and transfers; mission design, patched conics.
https://engineering.purdue.edu/online/courses/orbit-mechanics
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Natural behavior of planets and moons in the solar system as well as spacecraft motion: orbit dynamics, perturbations, and stability; trajectory control, on-orbit maneuvers, and transfers; mission design, patched conics.
Read More…
Spacecraft Electric Propulsion
https://engineering.purdue.edu/online/courses/spacecraft-elec-propulsion
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Read More…
Hypersonic Propulsion
The course is intended for students with undergraduate aerospace propulsion experience/education. The main emphasis is on high-speed airbreathing systems with and without turbomachinery. High-speed inlets, isolators, combustors and exhaust systems are discussed in detail. A brief introduction to modern detonation-based approaches and thermal management is included. Students conduct a detailed analysis of a given system as a final project in the course.
https://engineering.purdue.edu/online/courses/hypersonic-propulsion
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
The course is intended for students with undergraduate aerospace propulsion experience/education. The main emphasis is on high-speed airbreathing systems with and without turbomachinery. High-speed inlets, isolators, combustors and exhaust systems are discussed in detail. A brief introduction to modern detonation-based approaches and thermal management is included. Students conduct a detailed analysis of a given system as a final project in the course.
Read More…
Advanced Rocket Propulsion
AAE 53900, Advanced Rocket Propulsion, presents a graduate-level treatment of topics related to chemical rocket propulsion. Following a brief review of rocket fundamentals, the course provides a detailed discussion on thermochemistry and chemical equilibrium relating these concepts to the structure and operation of standard industry codes like the NASA Chemical Equilibrium with Applications (CEA) code. The next section of the course provides fundamentals of incompressible and compressible flows as applied to key elements of chemical propulsion systems such as propellant feed systems and nozzles. Before providing an in-depth look at solid, liquid, and hybrid propulsion systems, the course provides a review of fundamental heat transfer processes as applied to chemical rockets. The solid and hybrid rocket sections of the course include a review of ballistic models, burning rate theory, and erosive burning among other topics. The liquid rocket section of the course includes discussions on engine cycle analysis and turbopump design. In a typical semester, the course involves about seven homework assignments (including two in-depth homework assignments requiring more analyses and time than a traditional homework), and two exams (a midterm and a final).
https://engineering.purdue.edu/online/courses/advanced-rocket-propulsion
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
AAE 53900, Advanced Rocket Propulsion, presents a graduate-level treatment of topics related to chemical rocket propulsion. Following a brief review of rocket fundamentals, the course provides a detailed discussion on thermochemistry and chemical equilibrium relating these concepts to the structure and operation of standard industry codes like the NASA Chemical Equilibrium with Applications (CEA) code. The next section of the course provides fundamentals of incompressible and compressible flows as applied to key elements of chemical propulsion systems such as propellant feed systems and nozzles. Before providing an in-depth look at solid, liquid, and hybrid propulsion systems, the course provides a review of fundamental heat transfer processes as applied to chemical rockets. The solid and hybrid rocket sections of the course include a review of ballistic models, burning rate theory, and erosive burning among other topics. The liquid rocket section of the course includes discussions on engine cycle analysis and turbopump design. In a typical semester, the course involves about seven homework assignments (including two in-depth homework assignments requiring more analyses and time than a traditional homework), and two exams (a midterm and a final).
Read More…
Mechanical Behavior of Aerospace Materials
This course serves as an overview for materials behavior for students without a materials background, including seniors and entry-level graduate students. Materials are at the foundation for all of engineering, as evident by the latest products that we design, to the airplanes that we fly, to the latest smart phones. In fact breakthroughs with material research are often accompanied by rapid advancements in technology. Thus it is paramount for all engineers to have an understanding of the structure and behavior of materials. In this class, we focus on the structure of materials, the microstructure connection to mechanical properties, and ultimately failure mechanisms. Materials play an important role in both design and manufacturing, which will be addressed in the context of components and extreme environments. Of specific interest will be defects within materials, defect formation/evolution, and their role in strengthening mechanisms. Material anisotropy, micromechanisms, and elasto-plastic properties at the atomic, singlecrystal/ constituent, and polycrystal/material levels and their use in explaining the deformation and failure characteristics in metals, polymers, and ceramics; failure mechanisms and toughening in composites; structure and behavior of aerospace materials: metal alloys, ceramic-matrix composites, and fiber-reinforced polymer composites. Particular topics will also include: elastic deformation, dislocation mechanics, plastic deformation and strengthening mechanisms, creep, and failure mechanisms; design criteria; special topics. We will attempt to have minimal overlap with AAE 554 Fatigue of Structures and Materials, therefore we will not cover fracture, fatigue, or stress concentrators.
https://engineering.purdue.edu/online/courses/mechanical-behavior-materials
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
This course serves as an overview for materials behavior for students without a materials background, including seniors and entry-level graduate students. Materials are at the foundation for all of engineering, as evident by the latest products that we design, to the airplanes that we fly, to the latest smart phones. In fact breakthroughs with material research are often accompanied by rapid advancements in technology. Thus it is paramount for all engineers to have an understanding of the structure and behavior of materials. In this class, we focus on the structure of materials, the microstructure connection to mechanical properties, and ultimately failure mechanisms. Materials play an important role in both design and manufacturing, which will be addressed in the context of components and extreme environments. Of specific interest will be defects within materials, defect formation/evolution, and their role in strengthening mechanisms. Material anisotropy, micromechanisms, and elasto-plastic properties at the atomic, singlecrystal/ constituent, and polycrystal/material levels and their use in explaining the deformation and failure characteristics in metals, polymers, and ceramics; failure mechanisms and toughening in composites; structure and behavior of aerospace materials: metal alloys, ceramic-matrix composites, and fiber-reinforced polymer composites. Particular topics will also include: elastic deformation, dislocation mechanics, plastic deformation and strengthening mechanisms, creep, and failure mechanisms; design criteria; special topics. We will attempt to have minimal overlap with AAE 554 Fatigue of Structures and Materials, therefore we will not cover fracture, fatigue, or stress concentrators.
Read More…
Multidisciplinary Design Optimization
This fast-paced, graduate-level course introduces the techniques of engineering design optimization, leading into topics for Multidisciplinary Design Optimization (MDO). The application of these techniques to solve engineering design problems is also presented. First, students are exposed to basic concepts about and implementations of numerical optimization techniques, assuming that the students have little or no knowledge of these topics. Second, students investigate approaches for multiobjective and multidisciplinary optimization based upon knowledge of the basic techniques. Most recent syllabus
https://engineering.purdue.edu/online/courses/multidisciplinary-design-optimization
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
This fast-paced, graduate-level course introduces the techniques of engineering design optimization, leading into topics for Multidisciplinary Design Optimization (MDO). The application of these techniques to solve engineering design problems is also presented. First, students are exposed to basic concepts about and implementations of numerical optimization techniques, assuming that the students have little or no knowledge of these topics. Second, students investigate approaches for multiobjective and multidisciplinary optimization based upon knowledge of the basic techniques. Most recent syllabus
Read More…
Nondestructive Evaluation of Structures and Materials
Overview the physics, principles, and methods employed for nondestructive evaluation (NDE) of structures and materials. Major NDE techniques covered include radiographs, ultrasonics, eddy currents, penetrants, magnetic flux, and visual/optical methods. An introduction to structural health monitoring (SHM) is also provided. Spring 2020 Syllabus
https://engineering.purdue.edu/online/courses/nondestructive-evaluation-structures-materials
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Overview the physics, principles, and methods employed for nondestructive evaluation (NDE) of structures and materials. Major NDE techniques covered include radiographs, ultrasonics, eddy currents, penetrants, magnetic flux, and visual/optical methods. An introduction to structural health monitoring (SHM) is also provided. Spring 2020 Syllabus
Read More…
Elasticity in Aerospace Engineering
AAE 553 is a fundamental course in the theory of elasticity with emphasis on understanding the governing principles and solution techniques used in the stress analysis of elastic solids and structures. Cartesian tensors are introduced for formulations of general deformations and states of stress. Constitutive relations and field equations are derived for large deformation and then reduced to small deformation. Simple problems with practical applications are solved. Fall 2021 Syllabus
https://engineering.purdue.edu/online/courses/elasticity-aerospace-engineering
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
AAE 553 is a fundamental course in the theory of elasticity with emphasis on understanding the governing principles and solution techniques used in the stress analysis of elastic solids and structures. Cartesian tensors are introduced for formulations of general deformations and states of stress. Constitutive relations and field equations are derived for large deformation and then reduced to small deformation. Simple problems with practical applications are solved. Fall 2021 Syllabus
Read More…
Fatigue of Structures and Materials
Development and application of methods for predicting the fatigue life of structural components. Characterization and response of materials to cyclic loading. Fatigue resistant design of structures. Both fatigue crack initiation and crack propagation concepts are discussed.
https://engineering.purdue.edu/online/courses/fatigue-structures-materials
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Development and application of methods for predicting the fatigue life of structural components. Characterization and response of materials to cyclic loading. Fatigue resistant design of structures. Both fatigue crack initiation and crack propagation concepts are discussed.
Read More…
Mechanics of Composite Materials
This course provides students a background in modern composite materials which are being used in an ever-increasing range of applications and industries. Basic knowledge of composite materials will allow engineers to understand the issues associated with using these materials, as well as gain insight into how their usage differs from conventional materials such as metals, and ultimately be able to use composites to their fullest potential. Topics covered include: current and potential applications of composite materials, fibers, matrices, manufacturing methods for composites, anisotropic elasticity, micromechanics for determining mechanical properties of composite materials, classical laminated plate theory, failure and strength analysis of composite materials, and other advanced topics related to mechanics of composite materials. Spring 2021 Syllabus
https://engineering.purdue.edu/online/courses/mechanics-composite-materials
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
This course provides students a background in modern composite materials which are being used in an ever-increasing range of applications and industries. Basic knowledge of composite materials will allow engineers to understand the issues associated with using these materials, as well as gain insight into how their usage differs from conventional materials such as metals, and ultimately be able to use composites to their fullest potential. Topics covered include: current and potential applications of composite materials, fibers, matrices, manufacturing methods for composites, anisotropic elasticity, micromechanics for determining mechanical properties of composite materials, classical laminated plate theory, failure and strength analysis of composite materials, and other advanced topics related to mechanics of composite materials. Spring 2021 Syllabus
Read More…
Aeroelasticity
https://engineering.purdue.edu/online/courses/aeroelasticity
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Read More…
Finite Element Methods in Aerospace Structures
Introduction to the use of advanced finite element methods in the calculation of deformation, strain, and stress in aerospace structures. Topics include 1-D, 2-D, axisymmetric, and 3-D elements, isoparametric element formulation, convergence, treatment of boundary conditions and constraints. Emphasis is on the theoretical knowledge of the finite element method. Applied experience is gained by solution of aerospace structural analysis problems through use of a commercial package. Fall 2021 Syllabus
https://engineering.purdue.edu/online/courses/finite-element-methods-aerospace-structures
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
Introduction to the use of advanced finite element methods in the calculation of deformation, strain, and stress in aerospace structures. Topics include 1-D, 2-D, axisymmetric, and 3-D elements, isoparametric element formulation, convergence, treatment of boundary conditions and constraints. Emphasis is on the theoretical knowledge of the finite element method. Applied experience is gained by solution of aerospace structural analysis problems through use of a commercial package. Fall 2021 Syllabus
Read More…
System of Systems Modeling and Analysis
The goal for this course is to enable students to characterize, abstract, model, simulate, and analyze a special kind of system termed a system-of-systems (SoS). The course will cover a select few topics in detail, but also expose students to interesting areas of further study and highlight the importance of SoS in society. The course presents recent developments in frameworks for formulating system-of-systems problems, lexicon for their articulation, and analysis methodology for their study. Through individual and team projects, students gain experience in formulating problems and applying theory and techniques. Applications for team projects will include transportation, space exploration, energy, defense, and infrastructure, though others are possible in consultation with instructor. Spring 2020 Syllabus
https://engineering.purdue.edu/online/courses/system-systems-modeling-analysis
https://engineering.purdue.edu/online/@@site-logo/Purdue-Engr2.jpg
The goal for this course is to enable students to characterize, abstract, model, simulate, and analyze a special kind of system termed a system-of-systems (SoS). The course will cover a select few topics in detail, but also expose students to interesting areas of further study and highlight the importance of SoS in society. The course presents recent developments in frameworks for formulating system-of-systems problems, lexicon for their articulation, and analysis methodology for their study. Through individual and team projects, students gain experience in formulating problems and applying theory and techniques. Applications for team projects will include transportation, space exploration, energy, defense, and infrastructure, though others are possible in consultation with instructor. Spring 2020 Syllabus
Read More…