Notice: For the latest information and guidance on Purdue's response to COVID-19 please visit:

Mechanical Behavior of Aerospace Materials


Credit Hours:


Start Date:

August 24, 2020

Learning Objective:

SP2017 Syllabus


This course serves as an overview for materials behavior for students without a materials??background, including seniors and entry-level graduate students. Materials are at the foundation for??all of engineering, as evident by the latest products that we design, to the airplanes that we fly, to the??latest smart phones. In fact breakthroughs with material research are often accompanied by rapid??advancements in technology. Thus it is paramount for all engineers to have an understanding of the??structure and behavior of materials.
In this class, we focus on the structure of materials, the microstructure connection to??mechanical properties, and ultimately failure mechanisms. Materials play an important role in both??design and manufacturing, which will be addressed in the context of components and extreme??environments. Of specific interest will be defects within materials, defect formation/evolution, and??their role in strengthening mechanisms.
Material anisotropy, micromechanisms, and elasto-plastic properties at the atomic, singlecrystal/??constituent, and polycrystal/material levels and their use in explaining the deformation and??failure characteristics in metals, polymers, and ceramics; failure mechanisms and toughening in??composites; structure and behavior of aerospace materials: metal alloys, ceramic-matrix composites,??and fiber-reinforced polymer composites. Particular topics will also include: elastic deformation,??dislocation mechanics, plastic deformation and strengthening mechanisms, creep, and failure??mechanisms; design criteria; special topics. We will attempt to have minimal overlap with AAE 554??Fatigue of Structures and Materials, therefore we will not cover fracture, fatigue, or stress??concentrators.

Topics Covered:

Please see list of topics from past syllabi (Spring 2017 available)


Undergraduate Mechanics of Materials course - No prior knowledge of materials science is needed

Applied / Theory:

50 / 50


One midterm, one final


Official textbook information is now listed in the Schedule of Classes. NOTE: Textbook information is subject to be changed at any time at the discretion of the faculty member. If you have questions or concerns please contact the academic department.
Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites, Roesler, Joachim, Harders, Harald, Baeker, Martin; Springer, 2007; ISBN 978-3-540-73446-8. Can be downloaded for Purdue students for via going through the Purdue library website and entering the title into the keyword search:

Computer Requirements:


ProEd Minimum Requirements:


Tuition & Fees: