Courses

Product and Process Design

This course is about design innovation, creativity, and doing design. The focus is on learning to design and design processes. The concepts of product design are addressed from a multidisciplinary perspective that includes opportunity determination through inspiration, ideation, and implementation using design thinking framework. The classroom segment of the course focuses on the aspects of imagining future products and processes, Design Thinking and the Product Design Process.

Read More…

Intellectual Property for Engineers

This is a one credit hour course, not three credit hours. The course meets for the entire semester, 1 one-hour lecture per week. In this course, students will : gain a detailed understanding of types of intellectual property types (Patent, Trademark, Copyright, Trade Secret; learn to recognize inventions and innovative concepts; learn to work with intellectual property attorneys; learn to help patent attorneys with patent claims and prosecution; learn to harness monetary value of IP; learn aspects of licensing, commercialization and litigation; learn Intellectual Property creation and management in corporations; understanding Intellectual Property professional as a career choice; and, have an opportunity to hear from a host of stellar IP professionals

Read More…

Lubrication, Friction and Wear

Science, technology, and application of lubricated interacting surfaces in relative motion. Advanced analysis techniques and hands-on exposure to modern experimental methods provide an enhanced understanding of fundamental principles of lubrication, friction, and wear. Basics of design and analysis of machine components operating in the presence of air and liquid lubricants. Rolling fatigue, friction and wear models, and measurement techniques. Offered in alternate years.

Read More…

Micromechanics of Materials

Increasingly mechanical engineering design makes use of advanced materials. Novel materials can only be applied successfully if it is understood that materials fundamentally are of heterogeneous nature. The course introduces the fundamental mechanics aspects required for the analysis of heterogeneous materials, and concepts required for their application in mechanical engineering.

Read More…

Advanced Dynamics

Kinematics of paths and particle motion; kinetics of particles, rigid bodies and multi-body systems; Lagrangian formulation for mechanics of mechanical systems; holonomic and non-holonomic constraints; Lagrange's equations; Hamilton's principle for holonomic systems; classification and stability of vibratory systems; simple applications to vehicle dynamics, orbital motion, robotics.

Read More…

Mechanical Vibrations

The course will cover fundamental concepts on the vibration of mechanical systems including, but not limited to, review of systems with one degree for freedom, Lagrange's equations of motion for multiple degree of freedom systems, introduction to matrix methods, transfer functions for harmonic response, impulse response, and step response, convolution integrals for response to arbitrary inputs, principle frequencies and modes, applications to critical speeds, measuring instruments, isolation, torsional systems, introduction to nonlinear problems.

Read More…

Machine Design

Analysis of stresses and deflections due to complicated loading. Investigation of specific design problems through application of theory of elasticity, failure criteria, energy approach, and numerical methods. Individual design project.

Read More…

Theory and Design of Control Systems

This course will be divided into two parts. The first part will have an emphasis on single-input single-output (SISO) control in the classical sense, i.e. with an emphasis on modeling, analysis, and control design in the frequency domain. Advanced mathematical design tools will be introduced to formalize the underlining design principles of these classical design methodologies, with a strong emphasis on the understanding of fundamental performance limitations of various controller architectures. The second half of this course will focus on modern control theory, with an emphasis on modeling, analysis, and control design in the state-space domain. Throughout the course we will work almost entirely with linear systems, and we will draw meaningful connections between frequency and time-domain based approaches to control engineering.

Read More…

Digital Control

This course is the second in a two course series, ME575 and ME578. It is intended to facilitate the students to gain understanding in: sample theory, z-transform, and other analysis tools that are used to analyze and design digital control systems; Analysis: state space and input/output representation, modeling and analysis of digital control systems; Synthesis: emulation, I/O mapping design, state feedback control, state observer design, observer based compensator design, LQ optimal control, Kalman filtering, LQG design; Implementation: quantization, sampling and noise; of linear time-invariant (LTI) control system design and its extensions. It is intended to bridge between theory and application by bringing implementation issues into the consideration of controller design.

Read More…

Fourier Methods in Digital Signal Processing

Alternate Title: Fourier Methods in Digital Signal Processing Fundamentals of signal processing associated with Fourier analyzer systems are presented. Emphasis is on amplitude accuracy and frequency resolution properties necessary for reliable experimental methodologies in system identification, spectrum estimation, and correlation analysis. Deterministic as well as random data analyses are presented.

Read More…

Numerical Methods in Mechanical Engineering

This course will cover a range of numerical analysis techniques related to solving systems of linear algebraic equations, matrix eigenvalue problems, nonlinear equations, polynomial approximation and interpolation, numerical integration and differentiation, ordinary and partial differential equations.

Read More…

Engineering Optics

Unlike subjects such as mechanics or heat transfer which are based on applying a limited set of general equations to analyze specific situations, optics is more like electronics where the task is to build a system having specified performance goals using a combination of building-block components, each of which is described by its own equation(s). That is, the basic problem is often one of synthesis rather than analysis. It is therefore important to develop both an analytical understanding and a 'physical feel' for how different optical phenomena and optical components behave individually and in combination. Once the fundamentals are learned the best teacher is experience. However, examples discussed in the lectures and home problems are an important starting point.

Read More…

Complex Fluids

Read More…

Fundamentals of Electrochemical Energy Systems

Read More…

Solid Mechanics I

Elements of linear elasticity: Kinematics of deformation, equilibrium conditions, and constitutive relationship of materials. Classical problems in elastostatics and general solutions for field equations in elasticity. Anisotropic elasticity, thermal elasticity, chemical strain, nonhomogeneous elasticity.

Read More…

Numerical Methods in Heat, Mass, and Momentum Transfer

Governing conservation equations and their classification according to numerical properties. Discretization by Taylor series, weighted residual, and control volume methods. Solution of systems of algebraic equations. Discretization and solution of the convection-diffusion equation. Methods of solving the equations governing fluid flow. Mathematical modeling of turbulence, combustion, and radiation.

Read More…

Computational Fluid Dynamics

Read More…

Computational Fracture Mechanics

Advanced concepts of methods for the analysis of cracks, of crack propagation and damage evolution. Prediction of the macroscopic behavior of structures as it emerges from the presence of defects such as cracks, voids, or delamination. Linear elastic and nonlinear fracture problems. Rate independent and rate dependent problems. Methods in computational fracture mechanics where material separation emerges as an outcome of the boundary value problem. Demonstrations of how mechanical design can take advantage of the methods of computational fracture mechanics by introducing such concepts into structural analyses. Applications of computations in predictive analysis and its importance in simulation-based engineering.

Read More…

Multivariable Control System Design

The course provides students necessary background needed to understand and to apply the modern H-infinity control theory and mu-synthesis based robust control design techniques. The latest MATLAB robust control toolbox will be introduced and used to design controllers for specific applications.

Read More…

Microstructural Characterization Techniques

Measurement and metrology is continually one of the most active areas in the study and verification of materials and their processing. Materials structure at the micro- and nano-scales must be carefully controlled and monitored in modern industry and research. Knowing what tools to use for materials analysis/characterization, and being able to judge the plausibility of others people's claims, are crucial skills in the current work environment. Successful students will be familiar with all major techniques for analysis of microstructural features, both structural and chemical. The student will be aware of what technique is useful for particular situations, and understand the fundamental workings and limitations of the techniques and instruments.

Read More…