Lubrication, Friction and Wear
Science, technology, and application of lubricated interacting surfaces in relative motion. Advanced analysis techniques and hands-on exposure to modern experimental methods provide an enhanced understanding of fundamental principles of lubrication, friction, and wear. Basics of design and analysis of machine components operating in the presence of air and liquid lubricants. Rolling fatigue, friction and wear models, and measurement techniques. Offered in alternate years.
ME55600
Credit Hours:
3Description:
Science, technology, and application of lubricated interacting surfaces in relative motion. Advanced analysis techniques and hands-on exposure to modern experimental methods provide an enhanced understanding of fundamental principles of lubrication, friction, and wear. Basics of design and analysis of machine components operating in the presence of air and liquid lubricants. Rolling fatigue, friction and wear models, and measurement techniques. Offered in alternate years. Spring 2017 Syllabus
Topics Covered:
Introduction - History of Lubrication, Friction and Wear, Definition of conformal and non-Conformal Contacts, Regimes of Lubrication; Lubricants, Newtonian, non-Newtonian, Units, Grades, Pressure and Temperature Dependence, Surface Measurement Techniques (Contacting & non-Contacting); Surface Parameters of Interest, Bearing Materials;Viscous Flow, Petrov's law, Navier Stokes Equation, Continuity Equation, Viscometry; Types of Bearings, Journal, Thrust, Rolling Element, etc., Bearing Materials, Fundamentals of Lubrication (Reynolds Equation); Physical Significance of Terms in Reynolds Equation, Hydrodynamic Thrust Bearing (Analytical Solution); Hydrodynamic Thrust Bearing (Analytical Solution, Hydrodynamic Thrust Bearing (Numerical Solution; Journal Bearing Analytical Solution, Short and Long Width Journal Bearing Theory; Dynamically Loaded Journal Bearing, Summerfeld Solution; Hydrodynamic Squeeze Film Bearing, Hydrodynamic Squeeze Film Bearing; Lubrication of Non-Conformal Contacts (Hydrodynamic), Hertz Stress Theory & Deformation in Dry Contacts; Non-Dimensionalization, Lubrication of Non-Conformal Contacts (Elasto-Hydrodynamic - Line Contacts); Lubrication of Non-Conformal Contacts (Elasto-Hydrodynamic - Point Contacts), Lubrication of Non-Conformal Contacts (Elasto-Hydrodynamic - Point Contacts); Lubrication of Non-Conformal ContactPrerequisites:
Undergraduate fluid mechanicsApplied / Theory:
Web Address:
https://mycourses.purdue.edu/Homework:
25%Homework is accepted via Blackboard