Skip navigation



Michael Ladisch authors Lignin-derived Phenols: A New Frontier published in the journal Biofpr. 1 September 2017.
Mark Sayles and Michael Heinz co-author Afferent Coding and Efferent Control in the Normal and Impaired Cochlea published as pages 215-252 if the book Understanding the Cochlea as part of the Springer Handbook of Auditory Research. 1 September 2017.
Michael Ladisch co-authors Cellulose conversion of corn pericarp without pretreatment published in the journal Bioresource Technology. 30 August 2017.
Ramses Martinez co-authors Self-Powered, Paper-Based Electrochemical Devices for Sensitive Point-of-Care Testing, in the journal Advanced Materials Technologies. 22 August 2017.

Instrumentation is pervasive in biomedical applications. Sensors are used to understand physiological functions in healthy and diseased states, develop novel diagnostics, detect pathogens, monitor patient health, and evaluate treatment outcomes. Stimulation is applied to control disease or to restore function. World-class research in the Purdue Instrumentation group within the Weldon School of Biomedical Engineering is addressing all aspects of instrumentation design and application, from the engineering underlying device development and optimization, to the basic science required to develop novel experimental approaches for testing instrumentation and evaluating (patho)physiology, to the signal processing and biostatistics required to analyze data efficiently for clinical application.

Technology for measurement and stimulation of many varied biological systems is being developed, tested, and applied at Purdue in a wide range of biomedical applications. Cutting-edge technology development is ongoing in the design and fabrication of implantable analog integrated circuits, wireless data and power coupling, digital signal processing for online and offline data analysis, rapid prototyping of microfluidic biosensors, chromatographic purification techniques, wearable health technology, flexible/stretchable electronics, minimally invasive neuro-stimulation devices, rapid prototyping of low-cost health technologies, pathogen detection and evaluation of therapeutic efficacy, and acoustic biosensors. Specific applications being pursued within the group include epilepsy, glaucoma, cardiology, point of care diagnostics, neural interfaces, cellular analysis, mass spectrometry, assistive and rehabilitative medicine, auditory neuroscience, and device/tissue interactions. The multidisciplinary research team at the Weldon School of Engineering is not only developing and applying the next generation of instrumentation technology for improved global health, but is just as importantly training the next generation of biomedical engineers in this exciting area of translational research.

Meet our Instrumentation Faculty

Hear from Our Faculty