Skip navigation

Engineered Biomaterials and Biomechanics


Russell Main and Sherry Harbin co-author Densification of Type I Collagen Matrices as a Model for Cardiac Fibrosis published in the journal Advanced Healthcare Materials. 7 September 2017.
Sherry Harbin co-authors 3-dimensional (3D) tissue-engineered skeletal muscle for laryngeal reconstruction published in the journal The Laryngoscope. 26 August 2017.
Kinam Park authors The drug delivery field at the inflection point: Time to fight its way out of the egg published in the Journal of Controlled Release, 25 July 2017.

Biomaterials research focuses on how natural and synthetic materials interact with biological systems. These range from the inert materials used to replace entire joints to biomimetic scaffolds that restore functionality by promoting the body to regenerate the lost tissue. Research at the Weldon School of Biomedical Engineering covers all facets of this exciting area. From advanced studies characterizing the instructive role of extracellular matrix components, to developing novel polymeric biomaterials, researchers and students are finding new ways to replace, repair, or regenerate tissues lost or damaged from injury and disease.

Critical parameters that inspire biomaterial and implant design are the mechanical environment into which it will be placed and how cells sense and respond to mechanophysical cues, otherwise known as mechanobiology. By studying the strengths and weaknesses of individual tissue components, researchers are improving not only our understanding of the body, but also the devices needed to repair the body. Biomechanics research at the Weldon School spans experimental and computational design at multiple length scales, including studies into how external forces impact the body as a whole all the way down to quantifying how subcellular deformations influence gene expression.

The interdisciplinary team at the Weldon School of Biomedical Engineering is building on a solid foundation of accomplishment. From studies that can detect microfractures in bones before they can evolve into a problem, to advanced implants that monitor themselves and the environment around them, researchers are developing the knowledge and clinical treatments that will change the way we view and repair the body.

Meet our Engineered Biomaterials and Biomechanics Faculty

Hear from Our Faculty and Students