Skip navigation
R. Edwin García

R. Edwin García

Professor of Materials Engineering

Contact Information

Phone: 765-494-0148
School of Materials Engineering
Neil Armstrong Hall of Engineering
701 West Stadium Avenue
West Lafayette, IN 47907-2045


   R. Edwin García is a Professor at the School of Materials Engineering at Purdue University (2005-present). He obtained his undergraduate degree in Physics at the National University of Mexico in 1996, and his Ph.D. in Materials Science at the Massachusetts Institute of Technology in 2003. His research focuses on the design of materials and devices through the development of a fundamental understanding of the solid state physics of the individual phases, their short and long range interactions, and its associated microstructural properties and time evolution. His current research focuses in establishing relationships between the material properties and the resultant performance and degradation in electrochemical systems.

Research Interests

Microstructural Modeling of Multifunctional Materials, Microstructural Evolution, Reliability and Optimization of FeRAMs, Portable Power Sources (Rechargeable Batteries, Fuel Cells)

Personal Website

https://engineering.purdue.edu/ComputationalMaterials/people/EdwinGarcia/

Research Website

https://engineering.purdue.edu/ComputationalMaterials/index.php/main/research/

   My research group focuses on the design of materials and devices through the development of a fundamental understanding of the solid state physics of the individual phases, their short and long range interactions, and its associated microstructural evolution. The aim is to provide guidelines that will lead to experiments and processing operations with improved properties, performance, and reliability. Computational approaches ranging from kinetic Monte Carlo, phase field and level set methods, to finite elements, finite volumes, and symbolic computing are integrated. Home-grown analytical theories and algorithms are constantly developed to resolve the relevant time and length scales. Of importance are microstructure design, crystallographic texture, and grain boundary science and engineering, aimed to control the topology of the underlying phases and thus establish practical relations between processing, microstructure, and material properties. Fundamental areas of research include the prediction of equilibrium and kinetic properties in ferroelectric ceramics (in thin-film and bulk form, for both lead-containing and lead-free systems), electrochemical properties and interactions between charged point defects and grain boundaries, granular mixing and dynamics of dry and wet systems, and the generalities of microstructural evolution.

Publications

https://engineering.purdue.edu/ComputationalMaterials/index.php/main/publications/

Software

https://engineering.purdue.edu/ComputationalMaterials/index.php/main/software/

People

https://engineering.purdue.edu/ComputationalMaterials/index.php/main/people/

Education

B.S., 1996, National University of Mexico, Physics
M.S., 2000, Massachusetts Institute of Technology, Materials Science and Engineering
PhD., 2003, Massachusetts Institute of Technology, Materials Science and Engineering with a minor in Applied Mathematics

Class

MSE 230:    Structure and Properties of Materials
MSE 350:    Thermodynamics of Materials
MSE 597G: Modeling and Simulation of Materials
MSE 597I:   Introduction to Computational Materials
MSE 597N: Physical Properties of Crystals