R. Edwin García
Contact Information
Neil Armstrong Hall of Engineering
701 West Stadium Avenue
West Lafayette, IN 47907-2045
WebEx Link
R. Edwin García is a Professor at the School of Materials Engineering at Purdue University (2005-present). He obtained his undergraduate degree in Physics at the National University of Mexico in 1996, and his Ph.D. in Materials Science at the Massachusetts Institute of Technology in 2003. His research focuses on the design of materials and devices through the development of a fundamental understanding of the solid state physics of the individual phases, their short and long range interactions, and its associated microstructural properties and time evolution. His current research focuses in establishing relationships between the material properties and the resultant performance and degradation in electrochemical systems.
Research Interests
Microstructural Modeling of Multifunctional Materials, Microstructural Evolution, Reliability and Optimization of FeRAMs, Portable Power Sources (Rechargeable Batteries, Fuel Cells)
Personal Website
Research Website
   My research group focuses on the design of materials and devices through the development of a fundamental understanding of the solid state physics of the individual phases, their short and long range interactions, and its associated microstructural evolution. The aim is to provide guidelines that will lead to experiments and processing operations with improved properties, performance, and reliability. Computational approaches ranging from kinetic Monte Carlo, phase field and level set methods, to finite elements, finite volumes, and symbolic computing are integrated. Home-grown analytical theories and algorithms are constantly developed to resolve the relevant time and length scales. Of importance are microstructure design, crystallographic texture, and grain boundary science and engineering, aimed to control the topology of the underlying phases and thus establish practical relations between processing, microstructure, and material properties. Fundamental areas of research include the prediction of equilibrium and kinetic properties in ferroelectric ceramics (in thin-film and bulk form, for both lead-containing and lead-free systems), electrochemical properties and interactions between charged point defects and grain boundaries, granular mixing and dynamics of dry and wet systems, and the generalities of microstructural evolution.
Publications
Software
People
Education
Classes
Research Interests
Classes
Graduate Students
Postdoctoral Scholars