Skip navigation

Disordered Photonics

Author: Nancy
Event Date: March 27, 2014
Speaker: Hui Cao
Speaker Affiliation: Yale University
Time: 1:00pm
Location: BRK 2001

Most of the research in the field of photonics has focused on understanding and mitigating the effects of disorder which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve the device performance, e.g., in photovoltaics optical scattering improves the efficiency of light harvesting. We have utilized multiple scattering in a random photonic structure to build a compact on-chip spectrometer. The probe signal diffuses through a scattering medium generating wavelength-dependent speckle patterns which can be used to recover the input spectrum after calibration. Multiple scattering increases the optical pathlength by folding the paths in a confined geometry, enhancing the spectral decorrelation of speckle patterns and thus increasing the spectral resolution. By designing and fabricating the spectrometer on a silicon wafer, we efficiently channel the scattered light to the detectors, minimizing the reflection loss. We demonstrate the wavelength resolution of 0.75 nm at the center wavelength of 1500 nm in a 25 μm by 50 μm random structure. Furthermore, the phenomenal control afforded by semiconductor nanofabrication technology enables engineering of the disorder to reduce the out-of-plane scattering loss. Such a compact, high-resolution spectrometer that is integrated on a silicon chip and robust against the fabrication imperfections is well suited for lab-on-a-chip spectroscopy applications.

Hui Cao is a Professor of Applied Physics at Yale University, New Haven, Connecticut. She received her B.S. degree (1990) in Physics from Peking University, and her Ph.D. degree (1997) in Applied Physics from Stanford University. Her doctoral research was in the area of semiconductor microcavity quantum electrodynamics. Prior to joining the Yale faculty in 2008, Professor Cao was on the faculty of the Department of Physics and Astronomy at Northwestern University. Her technical interests and activities are in the areas of complex photonic materials and devices, nanophotonics, and biophotonics. She has co-authors one book and nine book-chapters, and has published more than 180 research papers in the area of random lasers, optical microcavities, photonic crystals, and structural coloration. She is the recipient of the NSF CAREER award, Packard Fellowship, Sloan Fellowship and Maria Goeppert-Mayer Award. She is also a fellow of the American Physical Society and fellow of the Optical Society of America.