Computer & Information Systems Engineering

Communications, Networking, Signal & Image Processing

The Communications, Networking, Signal & Image Processing (CNSIP) research area deals with the processing of information and signals that are part of our everyday lives. Applications include wireless mobile communications, radar, image processing, medical imaging, computer vision, speech recognition and synthesis, remote sensing, computer networking, and multimedia communication and processing. Research in these areas impact how we communicate with cellular phones and the Internet; the way that we travel using GPS and intelligent highways; how a machine automatically interprets and understands the visual world using images and videos; how we process the video, audio, and data that we communicate for personal entertainment and electronic commerce; and how virtual assistants recognize our voices and respond to our queries. Prospective students will be exposed to the latest research in this broad area. In addition to the topics above, this includes Information forensics, Machine learning, Computational imaging, Video analytics, 5G, millimeter waves, and Smart grid networking.

Read More

Computer Engineering

The biggest companies in the world—Apple, Amazon, Google, Facebook, Microsoft—are built on the technologies developed by computer engineers and computer scientists. But computer engineers are vital not only to those giant tech companies. No modern company can survive without the software and the hardware you will learn to design and to build in Computer Engineering at Purdue. As a computer engineer you will master technologies that can address critical societal needs in domains such as health care, national security, space research, technology for special needs children, and more. Computer Engineers learn about the full computing stack. They learn about hardware—from circuits to microcontrollers to general-purpose microprocessors. They learn about systems software—the operating systems, programming languages, compilers, and networking software that no modern computer can be without. They learn about algorithms that transform concepts to actions. And they learn about the grand challenges that drive modern computing: security, artificial intelligence, the Internet of Things, and beyond. Computer Engineering faculty are at the forefront of tackling these challenges through their path-breaking research which leads to high-impact inventions and which are translated to what they teach in the classrooms. Unlock your potential to shape the future of computing with Computer Engineering at Purdue.

Read More

VLSI and Circuit Design

Research is conducted in VLSI circuits and computer-aided design, building blocks for new circuit technology, integrated circuit testing and fault diagnosis, digital signal processing, computer-aided synthesis, field programmable gate arrays (FPGAs), and design of low-power circuits. Software tools are under development to assist engineers in the simulation and design of VLSI circuits.

Portable communication and computation have driven the need for low-power electronics. Recent progress has been made in creating tools for estimating power dissipation in CMOS circuits. The research approach is to use accurate and efficient power estimation techniques to drive the design of new low-power systems. Software tools for testing integrated circuits, rapid fault simulation, and failure analysis are also being developed.

New solid state technology and logic devices have provided the opportunity to change the way that digital systems are designed. Recent research has been initiated on automatic architecture synthesis for FPGAs, hardware and software co-design, low-power datapath synthesis, and smart power SiC integrated circuits.

The VLSI Design and Test Laboratory consists of a suite of high-performance workstations, integrated circuit testers, and commercial computer-aided design software. The laboratory is used for designing low-power and highly testable integrated circuits and for developing design automation software for fault diagnosis, testing, simulation, power estimation, and synthesis.

Read More