Abstract
Inspired from many living organisms, microvascular composites form a new class of fiber-reinforced polymeric matrix composites that contain a circulatory system made of an embedded network of microchannels. Based on the choice of the fluid circulating in the microvascular network, various applications are being considered for these materials, including autonomic healing of internal damage and active cooling for high temperature applications. A recent development in the manufacturing of this class of composites, based on specially treated sacrificial fibers that are woven in the original fabric, undergo the composite cure cycle before undergoing a vaporization process, has led to the creation of microvascular networks that are integrated directly into the composite microstructure. This technology is being considered for a variety of applications, including skin materials for hypersonic aircrafts and actively cooling of car batteries.

This new manufacturing process provides a lot of flexibility in the configuration of the embedded network. To assist with the material design process, a novel numerical tool based on an interface-based generalized finite element method (IGFEM) has been developed to model accurately and efficiently the impact of the coolant flowing through the microchannels on the thermal field in the composite. A gradient-based shape optimization scheme is then used together with the IGFEM solver to optimize the configuration of the embedded microchannel network based on a variety of objective functions and constraints. Various configurations of the microchannels are investigated and compared, based on their thermal and flow efficiency and on their impact on the structural integrity of the composite.

Bio
Originally from Belgium, Philippe Geubelle got his M.S. and Ph.D. in Aeronautics at Caltech in 1989 and 1993, respectively. After a year as Postdoctoral Research Associate at Harvard, he joined the University of Illinois at Urbana-Champaign in January 1995, where he is currently Bliss Professor and Head of Aerospace Engineering, with joint appointments in Mechanical Science and Engineering, in Civil and Environmental Engineering and at the Beckman Institute of Advanced Science and Technology. He is also serving as Director of the Illinois Space Grant Consortium.

His research interests pertain to the theoretical and numerical treatment of complex problems in solid mechanics, and, in particular, fracture mechanics, multiscale modeling of heterogeneous materials, composite manufacturing, thin films for MEMS and microelectronics applications and the computational design of biomimetic materials. Other research activities include computational aeroelasticity, structural/ acoustic coupling and parallel programming.