Sundar Murugappan and Karthik Ramani
FEAsy:A Sketch-based Interface Integrating Structural Analysis In Early Design
Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009 August 30 - September 2, 2009, San Diego, CA, USA
PDF PDF

Abstract:

The potential advantages of freehand sketches have been widely recognized and exploited in many fields especially in engineering design and analysis. This is mainly because the freehand sketches are an efficient and natural way for users to visually communicate ideas. However, due to a lack of fundamental techniques for understanding them, sketch-based interfaces have not yet evolved as the preferred computing platform over traditional menu-based tools. In this paper, we address the specific challenge of transforming informal and ambiguous freehand inputs to more formalized and structured representations. We present a domain- independent, multistroke, multi- primitive beautification method which detects and uses the spatial relationships implied in the sketches. Spatial relationships are represented as geometric constraints and satisfied by a geometric constraint solver. To demonstrate the utility of this technique and also to build a natural working environment for structural analysis in early design, we have developed FEAsy (acronym for Finite Element Analysis made easy) as shown in Fig. 1. This tool allows the users to transform, simulate and analyze their finite element models quickly and easily through freehand sketching, just as they would draw on paper. Further, we have also developed simple, domain specific rules-based algorithms for recognizing the commonly used symbols and for understanding the different contexts in finite element modeling. Finally, we illustrate the proposed approach with a few examples.

Download paper here.

Related Videos:

Cantilever Beam. avi

Truss.avi

Tagged with: , , ,
Posted in 2009, Design Learn, DESIGN METHOD, HUMAN SHAPE INTERACTION, Karthik Ramani, Multi-touch Interaction