Two-Dimensional Zeolites for Catalysis and Membrane Separations

Event Date: December 2, 2014
Speaker: Prof. Michael Tsapatsis
Speaker Affiliation: University of Minnesota
Time: 9:00 - 10:15 am
Location: FRNY G140

Abstract:  It is only recently that single-unit-cell thick zeolite nanosheets (2-dimansional zeolites; AIChE Journal 60(7), 2374-2381 (2014) ) with intact crystal and micropore structure were shown to be possible. The structural integrity and unprecedented purity and uniformity of these microporous nanosheets, open exciting possibilities for technological breakthroughs in molecular sieve membrane fabrication, synthesis of hierarchical catalysts and polymer-zeolite nanocomposites. Moreover, zeolite nanosheets enable for the first time zeolite pore mouth adsorption and catalysis to be studied by traditional uptake methods as well as surface science techniques. However, along with the exciting possibilities, challenges abound. For example, the in-plane dimensions of the existing nanosheets are in the sub-micrometer range limiting potential applications and processability as thin films. Moreover, the two exfoliated zeolites currently available are only a small fraction of zeolite topologies one would like to have available for a representative set. Earlier attempts to exfoliate other layered zeolites, including certain layered silicates and aluminophosphates with microporous layers, did not preserve the crystallographic order of the layers. Synthesis of high aspect ratio zeolite and other crystalline nanoporous nanosheets, methods to characterize their structure and properties, along with their processing and assembly to create membranes and catalysts will be the focus of this talk.

 

Bio:  Michael Tsapatsis joined the Department of Chemical Engineering and Materials Science at the University of Minnesota in September 2003 as a professor and he currently holds the Amundson Chair. He received an Engineering Diploma (1988) from The University of Patras, Greece, and MS (1991) and Ph.D. (1994) degrees from the California Institute of Technology (Caltech) working with G.R. Gavalas. He was a post-doctoral fellow with M.E. Davis at Caltech (1993/94). Before joining the University of Minnesota he was a faculty member in the Chemical Engineering Department at the University of Massachusetts Amherst (1994-2003). Recently, his research group developed hierarchical mesoporous zeolite catalysts and molecular sieve films based on 2-dimensional zeolites. This work has been recognized with the 2013 Alpha Chi Sigma Award for Chemical Engineering Research from AIChE and the 2013 Breck Award from the International Zeolite Association (co-awarded with Professor Caro).