Recent Events

January 26, 2010

Graduate Seminar Series: "Photochemically and Thermally Triggered Covalent Adaptable Polymer Networks" by Dr. Christopher N. Bowman

Polymer networks possessing reversible covalent crosslinks constitute a class of materials with unique capabilities including the capacity for adapting to an externally applied stimulus. These covalent adaptable networks (CANs) represent a paradigm in polymer network fabrication aimed at the rational design of structural materials possessing dynamic characteristics for specialty applications and functions. Here, we explore two distinct classes of CANs with either photochemically or thermally triggered responses. First, those in which the reversible bond formation is controlled by exposure to light will be discussed along with the subsequent initiation of the addition-fragmentation process that facilitates polymer network relaxation, photo induced actuation and shape memory effects, and stress relaxation. These results will be discussed in the context of thiol-ene-based photopolymerization reactions as well as their potential for implementation in thiol-yne photopolymerizations. Secondly, consideration of thermally inducible CANs will be presented; focusing on polymer networks formed from thermoreversible Diels-Alder adduct structures. In particular, the unique temperature dependent rheological behavior will be discussed as well as the potential for these materials to be healed through remotely controlled triggers that induce localized temperature changes. Ultimately, the potential for CANs-based materials to impact numerous materials applications will be presented in light of their distinctive array of material properties.
< Previous 10 | Viewing 21 to 26 of 26