The honeycomb of engineering framework: Philosophy of engineering guiding precollege engineering education

Event Date: November 23, 2021
Authors: Şenay Purzer, Jenny Quintana-Cifuentes, Muhsin Menekse
Journal: Journal of Engineering Education
Understanding the nature of engineering is important for shaping engineering education, especially precollege education. While much research has established the pedagogical benefits of teaching engineering in kindergarten through 12th grade (K–12), the philosophical foundations of engineering remain under-examined. This conceptual paper introduces the honeycomb of engineering framework, which offers an epistemologically justified theoretical position and a pedagogical lens that can be used to examine ways engineering concepts and practices are taught in precollege education.


The honeycomb of engineering was developed as a descriptive framework by examining existing literature over a wide range of related disciplines such as the philosophy of engineering and technology, as well as design thinking and practice. The pedagogical translation of the framework was then developed to examine published precollege engineering curricula.


The framework categorizes the multiple goals of engineering using an ontological classification of engineering inquiries anchored in the central practice of negotiating risks and benefits (i.e., trade-offs). This framework also illustrates the adaptability of design methodology in guiding six inquiries: (1) user-centered design, (2) design-build-test, (3) engineering science, (4) optimization, (5) engineering analysis, and (6) reverse engineering. The published curricula represented these inquiries with varying degrees, with design-build-test lessons seeing the most representation followed by user-centered design.


The honeycomb of engineering framework delineates variations in engineering education based on an epistemological explanation. The pedagogical translations offer guidance to educators, researchers, and curriculum designers for differentiating curricular aims and learning outcomes resulting from participation in different engineering inquiries.

Read the publication at length