Interventions for Enhancing Human Performance
Surgeons, including veterinary surgeons, are exposed to many ergonomic challenges due to their work settings. The prolonged, sustained neck flexion necessary during surgeries can lead to muscle fatigue and discomfort, potentially causing musculoskeletal disorders. Our research explored the use of a passive exoskeleton to provide support for forward head posture (FHP) during live veterinary surgeries in the field. Our findings indicate that the passive FHP support exoskeleton can potentially reduce musculoskeletal symptoms among surgeons. Further studies, though, are needed to continue generating biomechanical evidence to objectively assess the effectiveness of the exoskeleton in prolonged use.
Background: Musculoskeletal symptoms and injuries adversely impact the health of surgical team members and their performance in the operating room (OR). Though ergonomic risks in surgery are well-recognized, mitigating these risks is especially difficult. In this study, we aimed to assess the impacts of an exoskeleton when used by OR team members during live surgeries. Methods: A commercial passive arm-support exoskeleton was used. One surgical nurse, one attending surgeon, and five surgical trainees participated. Twenty-seven surgeries were completed, 12 with and 15 without the exoskeleton. Upper-body postures and muscle activation levels were measured during the surgeries using inertial measurement units and electromyography sensors, respectively. Postures, muscle activation levels, and self-report metrics were compared between the baseline and exoskeleton conditions using non-parametric tests. Results: Using the exoskeleton significantly decreased the percentage of time in demanding postures (>45° shoulder elevation) for the right shoulder by 7% and decreased peak muscle activation of the left trapezius, right deltoid, and right lumbar erector spinae muscles, by 7%, 8%, and 12%, respectively. No differences were found in perceived effort, and overall scores on usability ranged from “OK” to “excellent.” Conclusions: Arm-support exoskeletons have the potential to assist OR team members in reducing musculoskeletal pain and fatigue indicators. To further increase usability in the OR, however, better methods are needed to identify the surgical tasks for which an exoskeleton is effective.
Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance
Laparoscopic tool handles causing wrist flexion and extension more than 15° from neutral are considered “at risk” for musculoskeletal strain. Therefore, this study measured the impact of laparoscopic tool handle angles on wrist postures and task performance.
Surgeons and operating room staff from 4 medical centers rated pain/fatigue, physical, and mental performance using validated scales during 2 operative days: 1 day without implementing TSMB, the other including standardized (1.5 to 2 minutes) guided TSMB at appropriate 20 to 40-minute intervals throughout each case. Case type and duration were recorded as were surgeon pain data before and after each procedure and at the end of the surgical day. Individual body part pre/postdiscomfort difference was modeled, controlling for clinical center. Random coefficient mixed models accounted for surgeon variability.