Thermal Conductivity of Extremely Strained Polymer-Supported Au Nanofilms

Thermal Conductivity of Extremely Strained Polymer-Supported Au Nanofilms

Event Date: April 5, 2018
Authors: Y. Zeng and A. Marconnet
Journal: Materials Research Society (MRS) Spring Meeting
Paper URL: MRS Website
Materials Research Society (MRS) Spring Meeting, Phoenix, AZ, 2018.

April 5, 2018 11:30 - 11:45: PCC West, 100 Level, Room 106B

Flexible electronic devices generally integrate inorganic materials on a polymer substrate (such as metal films on a deformable polymer). The properties of these inorganic/organic hybrids are of great practical and theoretical interest. There have been numerous experimental and theoretical study of their mechanical properties, especially the failure strain of polymer-supported metal films. The fracture strain of polymer-supported thin metal films is significantly higher than that of free-standing metal films due to the suppressed necking in the supported metal film. However, there are few studies of the thermal conductivity of extremely strained metal films and inorganic/organic hybrids. Here, we experimentally measure the thermal conductivity of extremely strained polyimide-supported Au nanofilms (100 nm Au on 25.4 µm polyimide). The systematic study of interrelated mechanical, electrical, and thermal properties leads to a better understanding of the performance of flexible electronic devices across a range of realistic operating conditions. In addition, the validity of Wiedemann-Franz law for extremely strained metal is evaluated by comparing the measured thermal and electrical conductivities.