Structural Health Monitoring

Zhang, X., Eric Wogen, B., Chu, Z., Dyke, S. J., Poston, R., Hacker, T., ... & Hunter, J. (2022). Machine-Supported Bridge Inspection Image Documentation Using Artificial . Transportation Research Record, 03611981221135803.

Zhang, X., Beck, C., Lenjani, A., Bonthron, L., Lund, A., Liu, X., ... & Hunter, J. (2022). Enabling Rapid Large-Scale Seismic Bridge Vulnerability Assessment Through Artificial Intelligence. Transportation Research Record, 03611981221112950.

Park, J. A., Liu, X., Yeum, C. M., Dyke, S. J., Midwinter, M., Choi, J., ... & Benes, B. (2022). Multioutput Image Classification to Support Postearthquake Reconnaissance. Journal of Performance of Constructed Facilities, 36(6), 04022063.

Liu, X., Iturburu, L., Dyke, S. J., Lenjani, A., Ramirez, J., & Zhang, X. (2022). Information fusion to automatically classify post-event building damage state. Engineering Structures, 253, 113765.

Choi, J., Park, J. A., Dyke, S. J., Yeum, C. M., Liu, X., Lenjani, A., & Bilionis, I. (2022). Similarity learning to enable building searches in post‐event image data. Computer‐Aided Civil and Infrastructure Engineering, 37(2), 261-275.

Liu, X., Dyke, S. J., Yeum, C. M., Bilionis, I., Lenjani, A., & Choi, J. (2020). Automated Indoor Image Localization to Support a Post-Event Building Assessment. Sensors, 20(6), 1610.

Yeum, C. M., Dyke, S.J., Benes, B., Hacker, T., Ramirez, J., Lund, A., & Pujol, S., (2019). Postevent Reconnaissance Image Documentation Using Automated Classification. Journal of Performance of Constructed Facilities. 33(1), 04018103. DOI: 10.1061/(ASCE)CF.1943-5509.0001253.

Choi, J., Yeum, C. M., Dyke, S.J., & Jahanshahi, M. R., (2018). Computer-Aided Approach for Rapid Post-Event Visual Evaluation of a Building Façade. Sensors. 18(9), 3017. DOI: https://doi.org/10.3390/s18093017.

Yan, G., Dyke, S. J., & Irfanoglu, A., (2018). Experimental Validation of Damage Detection based on Member Axial-strain Mode Shapes for Truss Structures. Journal of Vibration Testing and System Dynamics. 2(4), 403-416. DOI: 10.5890/JVTSD.2018.12.005.

Yeum, C.M., Choi, J., & Dyke, S.J., (2018). Automated Region-of-Interest Localization and Classification for Vision-based Damage Detection on Civil Infrastructure. Structural Health Monitoring. DOI: 10.1177/1475921718765419.

Yeum, C. M., Dyke, S. J., & Ramirez, J. (2018). Visual data classification in post-event building reconnaissance. Engineering Structures. 155, 16-24. DOI: 10.1016/j.engstruct.2017.10.057

Yeum, C.M., Choi, J., & Dyke, S.J., (2018). Automated Region-of-Interest Localization and Classification for Vision-based Damage Detection on Civil Infrastructure. Structural Health Monitoring. DOI: 10.1177/1475921718765419.

Yeum, C.M., Choi, J., & Dyke, S.J., (2017). Autonomous image localization for visual inspection of civil infrastructure. Smart Materials and Structures. 26 (3). DOI: 10.1088/1361-665X/aa510e

Martínez, I. L., Williams, M. S., Dyke, S., Krötzsch, M., & Pegon, P. (2017). Next directions in experimental data for seismic hazard mitigation. Engineering Structures. 136, 535-546. DOI: 10.1016/j.engstruct.2016.12.012.

Yeum, C. M., (2016). Computer Vision-Based Structural Assessment Exploiting Large Volumes of Images. Doctoral Dissertation. Purdue University, West Lafayette, IN.

Yeum, C. M., & Dyke, S.J. (2015). Vision-Based Automated Crack Detection for Bridge Inspection. Computer-Aided Civil and Infrastructure Engineering. 30 (10), 759–770.

Huang, X. H., Dyke, S., & Xu, Z. D. (2015). An in-time damage identification approach based on the Kalman filter and energy equilibrium theory. Journal of Zhejiang University-SCIENCE A. 16(2), 105-116.DOI: 10.1631/jzus.A1400163

Pejsa, S., Dyke, S. J., & Hacker, T. J. (2014). Building Infrastructure for Preservation and Publication of Earthquake Engineering Research Data.The International Journal of Data Curation. 9(2), 83-97. DOI: 10.2218/ijdc.v9i2.335.

Giraldo, D., Caicedo, J.M., Song, W., Mogan, B., & Dyke, S.J. (2009). Modal Identification Through Ambient Vibration: A Comparative StudyJournal of Engineering Mechanics. 135 (8), 759-770.

Song, W. & Dyke S.J., (2009). Improved Damage Localization and Quantification Using Subset Selection. Journal of  Engineering Mechanics. 135, 548-560 .

Yun G.J., Ogorzalek, K.A., Dyke, S.J., & Song, W. (2009). A Two-Stage Damage Detection Approach based on Subset Selection and Genetic Algorithms. Smart Structures and Systems. 5, 1-21.

Castaneda N.E. (2008). In Situ Wireless Sensing For Distributed Structural Health Monitoring. MS Thesis. Washington University, St. Louis, MO.

Yun G.J., Ogorzalek, K.A., Dyke, S.J. & Song, W. (2008).  A parameter subset selection method using residual force vector for multiple damage locations. Structural Control and Health Monitoring. DOI: 10.1002/stc.284

Koh, B.-H. & Dyke, S.J. (2007). Structural Damage Detection in Cable-Stayed Bridges Using Correlation and Sensitivity of Modal DataComputers and Structures. 85, 117–130.

Giraldo, D. (2006). A Structural Health Monitoring Framework for Civil Structures. Doctoral Dissertation. Washington University, St. Louis, MO.

Giraldo, D., Dyke, S.J., and Caicedo J.M. (2006). Damage Detection Accommodating Varying Environmental Con ditionsStructural Health Monitoring: An International Journal. 5 (2), 155-172.

Caicedo, J.M. & Dyke, S.J. (2005). Experimental Validation of Structural Health Monitoring for Flexible Bridge Structures Structural Control and Monitoring. 12, 425-443.

Caicedo, J.M., Dyke, S.J., & Johnson, E.A. (2004). NExT and ERA for phase I of the IASC-ASCE benchmark problemJournal of Engineering Mechanics (ASCE). 130 (1), 49–60.

Caicedo, J.M. (2003). Structural Health Monitoring of Flexible Civil Structures. Doctoral Dissertation. Washington University, St. Louis, MO.

Caicedo, J.M. (2001).  Two Structural Health Monitoring Strategies Based on Global Acceleration Responses: Development, Implementation, and Verification. MS Thesis. Washington University, St. Louis, MO.