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Title: Computer Vision-Based Structural Assessment Exploiting Large Volumes of 

Images. 
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Visual assessment is a process to understand the state of a structure based on evaluations 

originating from visual information. Recent advances in computer vision to explore new 

sensors, sensing platforms and high-performance computing have shed light on the 

potential for vision-based visual assessment in civil engineering structures. The use of low-

cost, high-resolution visual sensors in conjunction with mobile and aerial platforms can 

overcome spatial and temporal limitations typically associated with other forms of sensing 

in civil structures. Also, GPU-accelerated parallel computing offers unprecedented speed 

and performance, accelerating processing the collected visual data. However, despite the 

enormous endeavor in past research to implement such technologies, there are still many 

practical challenges to overcome to successfully apply these techniques in real world 

situations. A major challenge lies in dealing with a large volume of unordered and complex 

visual data, collected under uncontrolled circumstance (e.g. lighting, cluttered region, and 

variations in environmental conditions), while just a tiny fraction of them are useful for 

conducting actual assessment. Such difficulty induces an undesirable high rate of false-

positive and false-negative errors, reducing the trustworthiness and efficiency of their 

implementation. To overcome the inherent challenges in using such images for visual 

assessment, high-level computer vision algorithms must be integrated with relevant prior 

knowledge and guidance, thus aiming to have similar performance with those of humans 

conducting visual assessment. Moreover, the techniques must be developed and validated 

in the realistic context of a large volume of real-world images, which is likely contain 

numerous practical challenges. In this dissertation, the use of computer vision algorithms 

is explored to address two promising applications of vision-based visual assessment in civil 

engineering: visual inspection, and visual data analysis for post-disaster evaluation. For 

both applications, techniques are developed here to enable reliable and efficient visual 
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assessment for civil structures and demonstrate them using a large volume of real-world 

images collected from actual structures. State-of-art computer vision techniques, such as 

structure-from-motion and convolutional neural network techniques, facilitate these tasks. 

This highly cross-disciplinary research is scalable and expandable to many other 

applications in vision-based visual assessment, and will serve to close the existing gaps 

between past research efforts and real-world implementations. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Visual changes provide obvious warning signs that a structure’s condition is deteriorating, 

and firm evidence of the consequences certain unexpected event(s) affecting the structure 

in the past. Thus, visual assessment is the primary form of structural evaluation to support 

decisions relating to their safety, maintenance, and repair. Typical applications of visual 

assessment in the field of civil engineering include inspection of damage in a structure, 

oversight of the construction process and equipment, post-hazard assessment for situational 

awareness or post-event reconnaissance, all of which are based strongly on visual 

information as the main source of information. Here, a “structure” refers to the large-scale 

facilities that constitute the built environment providing commodities and services essential 

to enable, sustain, or enhance societal living conditions such as roads, bridges, tunnels, or 

other constructed facilities.  

 Currently, human engineers should actively involve at least one or more steps of 

visual assessment, including the observation, data collection, analysis, decision making, 

and documentation. The human visual assessment does have certain limitations. First, 

human inspection is expensive and time-consuming. Civil structures are relatively large 

and are often in a harsh environment, introducing challenges in reaching and accessing the 

critical regions needed to view the structure. Expensive equipment or scaffolding is often 

required to reach important locations in certain structures, and thus sometimes these areas 

may be superficially examined or even neglected. Thus, inspections must be performed by 

personnel trained for such situations. Second, human inspection can be inconsistent, 

because human’s attention and abilities vary from day to day, and the visual data is still 

manually analyzed and documented by humans. Relying on an engineer’s subjective, 

qualitative, or empirical knowledge may result in false evaluations, followed by erroneous 

reports and documents. Third, human inspection is, in some cases, time-critical. In other 

words, there may be an immediate need for decision-making based on visual evaluation in 

some applications. For instance, it may be necessary to make decisions related to disaster 

response, to repair needs or closure of a structure based on damage existing in a critical 
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region, or to identify the needs for data collection during a reconnaissance trip. For time-

critical needs, techniques that can sift through the information in a rapid and efficient 

manner should be developed. 

There is a compelling need to offer rapid, efficient and inexpensive tools to support 

various applications for visual assessment. Ultimately, a breakthrough will be established 

by replicating the actions and abilities of the human performing visual assessment. To 

achieve this goal, the necessary steps will involve sensing, processing, and mobile platform, 

and through automation of these functions, the benefits will yield significant savings in 

time and cost. Fig. 1.1 indicates how the research community can exploit recent 

technologies to support, or eventually replace, these functions of the human using computer 

automation. For the sensing and platform, current visual sensing capabilities are quite 

remarkable, achieving fine temporal and spatial granularity. As imaging sensors have 

become smaller, cheaper and more powerful, images including RGB, infrared or thermal 

can be readily collected from smartphones or mobile cameras with almost no additional 

cost. Moreover, recently commercialized unmanned aerial vehicles (UAVs) have expanded 

sensor mobility from ground to sky (Bonnin-Pascual and Ortiz, 2014; New America, 2015), 

and a head-mounted optical displays such as Google Glass™ or action cameras have 

received significant attention for their ability to record and learn human actions. With the 

aid of modern parallel computations and GPUs, powerful computer vision methods and 

machine learning algorithms have been realized and established within computer science 

and engineering, and related disciplines. In some applications, these have nearly achieved 

human-level performance (Taigman et al., 2014). These methods have been considered for 

a broad range of applications, ranging from speech or text recognition to autonomous 

driving (Ciresan et al., 2012; Chen et al., 2014; Hannun et al., 2014). Such methods have 

the potential to transform the way computers recognize visual contents-of-interest in visual 

data, beyond just using the metadata recorded in a text form. These new opportunities are 

beginning to compete with the human-based visual assessment regarding cost and 

performance. 
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Figure 1.1 Recent technology that can replicate the functions of human for visual 

assessment. 

Despite the tremendous advances made in the relevant technologies, at this time, 

computer vision methods are rarely implemented for real-world visual assessment. This 

unfortunate situation is due to the fact that the techniques, when used in isolation, still have 

limitations for use in vison-based assessment. The methods are quite capable of replicating 

individual functions of the human. However, a major barrier to the use of these 

technologies for visual assessment is that a good understanding of how to implement them 

in a task-oriented and realistic manner is lacked, especially when it comes to a large volume 

of images. The technologies are certainly not “plug and play.” For example, many people 

are expecting that advancing UAV technologies will automatically yield a breakthrough in 

visual inspection for inaccessible and large civil structures. However, humans still need to 

spend significant time to collect, organize, and view all of the images or videos from the 

UAV. Thus, few significant gains in efficiency or cost have been achieved to date. A UAV 

must be able to be more selective in the acquisition and collection of photos to generate 

greater efficiency. Moreover, processing of the raw images without any preliminary 

filtering is computationally expensive and is also hindered by a large number of false-

positive errors, which would impede actual implementation in the field. Further, as the cost 

of image collection decreases, people tend to collect more and more photos to inform 

decision making and scientific research. However, without computational methods that can 

enable useful automation, manual documentation and analysis are quite expensive. Thus, 

valuable visual data, collected at some cost, remain unused in many cases.  
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The methods in this dissertation are focused on breaking down these barriers to 

exploit the relevant technologies to their full potential, and to leverage existing computer 

vision techniques or those in development to be used more accurately and efficiently with 

large volumes of images. As an example of damage detection, existing techniques have 

continued to focus on acquiring an answer to the question “Can engineers detect damage 

on images?”. Unfortunately, regardless of accuracy and reliability of the underlying 

techniques, the increasing complexity, and uncertainty in the collected large number of 

images remains a challenge for those methods. Alternatively, the techniques developed in 

this dissertation provide a means to detect the images that deserve to be processed based 

on the content and likelihood of meaningful information available on images, as extracted 

using modern computer vision technologies. 

1.2 Objective and Contribution 

In this study, the overarching research objective is to develop and demonstrate practical 

and feasible vision-based visual assessment techniques using a large volume of images. 

These methods will enable automated, reliable, and efficient evaluation of civil engineering 

structures. Beyond simply processing the images, the information available in the image(s) 

is extracted by leveraging modern computer vision techniques, including feature extraction, 

object recognition, and multi-view geometry. By incorporating these advanced 

technologies, the transformative techniques developed in this dissertation are capable of 

detection, localization, classification and evaluation of visual data, centered in the 

structural engineering domain for automated vision-based visual assessment. Two 

promising applications of vision-based visual assessment are considered in this dissertation: 

visual inspection for condition evaluation, and visual data analysis for post-disaster 

evaluation.  

The key contribution of this research is to push the boundaries of computer vision 

into a new territory in such a way as to realize existing and future vision-based visual 

assessment techniques when it comes to a large volume of complex images collected from 

real-world structures. Previous researchers have developed and validated their techniques 

using a small quantity of images that were collected with the intention of using them for 

specific purposes or applications. However, in real circumstances, there is no guarantee 
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that one may be able to collect favorable images; in the real world, there is significant 

uncertainty in locations, viewpoints, or contents. Furthermore, there is no assurance that 

the methods will be able to handle large numbers of, complex, and unstructured images in 

such a way as to be tractable in the context of processing, analysis, and documentation. 

Instead, in a manner that is entirely different from the prior research, the techniques 

developed here utilize state-of-art computer vision techniques to fully extract and exploit 

all information available on images, including visual features, camera geometry, and 

contents so as to reduce the complexity coming from processing and analyzing a large 

volume of images. Thus, the techniques developed here will really enable a vision-based 

visual assessment to address real-world problems in a feasible way. 

1.3 Scope of Work 

In this dissertation, several important techniques are developed that, when incorporated 

into the procedures of existing or future vision-based visual assessment techniques, will 

enable for their successful implementations in real-world problems. The first half of this 

dissertation described the core techniques developed for enabling futuristic autonomous 

visual inspection in civil structures. In Chapter 2, a new approach for automating damage 

detection is proposed. Rather than searching for cracks on entire images, objects which 

have areas susceptible to cracks (bolts in this case) are first detected on all of the images. 

This strategy greatly increases detectability of cracks by narrowing down searching areas 

and damage scales in acquired images. In Chapter 3, an automated image localization 

technique is developed to extract regions of interest in each of the images before utilizing 

vision-based visual inspection techniques. Thus, this work goes beyond the specific 

approach developed in Chapter 2, in that this technique can extract regions-of-interest on 

images using the geometric relationship between the images and the target structure, which 

are independent of visual appearance. Analysis of such highly relevant and localized 

images would enable efficient and reliable visual inspection in the future. Both techniques 

are designed to be applicable for visual inspection of a large-scale civil engineering 

structure using a large number of images gathered from one or more UAVs. These core 

techniques can be adapted to consider other target objects and areas, and also integrated 

with existing damage detection techniques for various inspection tasks.  
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In the second half of this dissertation, a new field of research is addressed: the 

automated analysis, classification, and documentation of visual data collected from post-

event reconnaissance. To systematically build the tools needed to automatically extract 

knowledge from images acquired from past disasters, the focus here is on developing a 

system to annotate (Chapter 4) and automatically classification and detection visual 

contents on images (Chapter 5). Here, “annotation” indicates that the visual contents on the 

images, which are to be documented in immediate or future usage, are identified in a 

manual or automated way. In Chapter 4, an advanced structured annotation method is 

proposed for describing semantic and descriptive contents on images originating from 

earthquake reconnaissance missions. The image annotation method enables conversion of 

the data into a searchable form, guided by various queries. Chapter 5 is dedicated to the 

development and demonstration of reconnaissance-driven computer vision methods 

capable of detection, classification, and evaluation of visual data for the automated analysis 

of large volumes of disaster reconnaissance images. Image classification and object 

detection are incorporated into the procedures to accurate extract the target contents of 

interest. As an illustration of the technique and its capabilities for visual assessment, 

collapse classification and spalling detection are demonstrated using a large volume of 

images gathered from past earthquake disasters. 

The technologies developed in this dissertation are briefly summarized in Table 1.1. 

This table is a guide to navigating all research conducted. 
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Table 1.1 A brief summary of the techniques developed within this dissertation 

 Vision-based Automated 

Crack Detection 

Autonomous Image 

Localization 

Semantic Annotation of 

Earthquake Images 

Collapse Image Classification Spalling Detection and 

Localization on Images 

Motivating 

Questions 

• How do engineers visually 

differentiate crack and scratch? 

• Is one image enough to detect 

damage?  

• Do engineers need to process the 

entire area of raw images for visual 

inspection?  

• How do engineers handle a large 

volume of images collected from 

UAV for visual inspection?  

• How do engineers make existing 

vision-based visual inspection 

techniques feasible and practical? 

• How to annotate visual information 

on images in a descriptive way? 

• How to retrieve annotated 

descriptive information? 

• How do images support decision-

making during a reconnoassiace 

mission? 

• How to automatically classify 

images-of-interest? 

• How to rapidly organize a large 

volume of images? 

• How do images support decision-

making during a reconnoassiace 

mission? 

• How to annotate visual contents on 

images collected from a disaster? 

Purpose Development of a futuristic vision-

based crack detection using images 

gathered from UAVs 

Localization of region-of-interest in 

images of a target structure  

Retrievable annotation of descriptive 

information in earthquake images  

Classification of collapse images 

among images gathered from 

reconnaissance mission 

Detection and localization of spalling 

on images 

Contribution A new transformative approach for 

visual inspection using computer 

vision methods 

Enabling the use of existing damage 

detection techniques in the context of 

a large volume of images collected 

from UAVs  

Proposition of an advanced 

formalized and structured annotation 

method for earthquake images  

Demonstration of the proposed 

method using an unprecedented 

number of real-world images 

Demonstration of the proposed 

method using an unprecedented 

number of real-world images 

Input Data • Large volume of images collected 

from UAVs 

• Classifier for detecting target 

objects-of-interest 

• Large volume of images gathered 

from UAVs  

• Locations of target areas in 3D 

• Baseline model in 3D 

Images collected from earthquake 

events 

• Large volume of images collected 

from building reconnaissance 

missions 

• Classifiers for image-of-interest 

• Large volume of images collected 

from building reconnaissance 

missions 

• Classifiers for object-of-interest 

Outcome Detection of crack damage near 

selected target objects  

 

Region-of-interest on images having 

the same scale of a target object from 

different view points  

Retrievable descriptive information 

for earthquake images 

Images-of-interest among all images 

collected at reconnaissance 

Detection and localization of object-

of-interest on images 

Algorithm/ 

Technique 

• Integral channel features  

• Multi-view geometry 

• Community detection 

• Edge detection 

• Structure-from-motions 

• Multi-view geometry 

• Web ontology language  

• Resource description framework 

(RDF) 

Deep convolutional neural networks 

(CNN) 

• Deep convolutional neural networks 

(CNN) 

• Selective searching algorithm 

Feature • Fully automated visual inspection 

• Design prior knowledge for 

damage detection 

• Fully automated extraction of 

region-of-interest on images 

• Working on any sizes and shapes of 

region-of-inspection 

• Earthquake image ontology 

• Triple-store annotation methodology 

 

• Applicable to the classification of 

any images that have visual 

similarity. 

• Rapid classification of images  

Automated estimation of size and 

location of objects-of-interest 

Application • Damage detection in large scale 

structures 

• Detection of target elements for 

visual inspection 

• Visual inspection of large-scale 

structures in general 

• Visual condition monitoring  

Archiving building reconnaissance 

images for scientific research 

• Rapid disaster response 

• Automated documentation of 

building reconnaissance images for 

decision support 

Automated documentation of building 

reconnaissance images for decision 

support 

Chapter Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 5 

Reference Yeum and Dyke, 2015  Yeum, et al., 2017 Yeum, et al., 2016  
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CHAPTER 2. VISION-BASED AUTOMATED VISUAL 

INSPECTION FOR LARGE-SCALE CIVIL INFRASTRUCTURE 

2.1 Motivation 

Visual inspection of the civil structure is customarily used to identify and evaluate faults. 

Most decisions relating to structural maintenance are based on assessments from visual  

inspections. However, a current visual inspection conducted by human inspectors has 

several limitations. The study, undertaken by the US Federal Highway Administration’s 

Nondestructive Evaluation Validation Center (NDEVC) in 2001, investigated accuracy and 

reliability of routine and in-depth visual inspections, which are regularly scheduled 

inspection every two years (Moore et al., 2001). The study showed that there is a great 

discrepancy in the results when several inspectors inspect the same structure. Factors 

include accessibility, light intensity, lack of specialized knowledge, perception of 

maintenance, and visual acuity and color vision. Although some factors are attributed to 

carelessness or improper training of inspectors, most of them cannot be physically 

overcome by a human in the current visual inspection process. 

To tackle this issue, initially, visual information from the civil structure should be 

remotely accessed and collected automatically according to established standardized 

procedures. In the literature, many researchers have proposed remote access of image 

acquisition systems for capturing images under or over civil structures. A visual monitoring 

system was suggested by controlling several cameras mounted on bridges to collect images 

(Jahanshahi et al., 2011). Using these images, the scenes of bridges are periodically 

constructed to evaluate the evolution of cracks or corrosion. Another approach is to develop 

equipment for improving accessibility to large bridges. U-BIROS (Ubiquitous Bridge 

Inspection Robot System) proposed robotic image acquisition system, which scans bridges 

using a robotic arm equipped with cameras (Lee et al., 2011). This system is similar to an 

under-bridge inspection vehicle but replaces a bucket with cameras. The California 

Department of Transportation (Caltrans) bridge inspection project developed a wired aerial 

robotic platform for close inspection of bridges or other elevated highway structures 

(Miller, 2004; Moller, 2008). The vehicle is capable of vertical takeoff and landing, 

translation to horizontal movement and orienting a video camera, all controlled by 
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operating personnel on the ground. Recently, a multi-rotor helicopter became 

commercially available to wirelessly take pictures or videos for inspection of structures 

such as pipelines, power lines or dams (Adams and Friedland, 2011). 

Once a suitable collection of visual information is collected from a bridge, robust 

inspection techniques should automatically perform the visual inspection tasks outlined in 

the manual. Vision-based visual inspection is not a new concept and has been broadly 

developed and used for civil, mechanical or aerospace structures. In the last few decades, 

researchers have realized amazing improvements in vision-based structural evaluation for 

civil engineering applications. For civil engineering, the major tasks encompassed by 

visual inspection can be grouped according to the two most common materials used, 

concrete and steel, which exhibit entirely different characteristics when it comes to damage. 

Defects in concrete, similar to asphalt pavement, typically manifest as cracks or 

delaminations. First, cracking is a major mode of damage in concrete, and inevitably occurs 

at initiation or during operation. However, a crack can be the result of one or a combination 

of factors such as drying shrinkage, thermal contraction, restraint shortening, subgrade 

settlement, and applied load (Portland Cement, 2001). Thus, the occurrence of a crack in 

concrete is not necessarily a cause for concern but should be left to the judgment of the 

inspector. The appearance of a crack has a mostly clear low intensity than the background, 

and its pattern is a straight or curved line with a relatively uniform width. Thus, intensity-

based edge detection and segmentation approaches are widely used (Abdel-Qader et al., 

2003; Jahanshahi et al., 2009; Yamaguchi et al., 2010). However, the challenges include 

(1) similar appearance as that of other edges present, (2) connection of disjointed cracks 

detected, (3) scale estimation, and (4) image corruption due to environmental conditions, 

such as shadows or dirt. Various techniques have been proposed to overcome these 

challenges such as statistically learning to identify crack appearance for classification, 

quantification shadow removal and connecting crack fragment (Miller, 2004; Jahanshahi 

et al., 2013; Zhang et al., 2014). Second, delamination, such as flaking or spalling, is 

another likely damage scenario that could be investigated with visual methods. Abrupt 

delamination damage like spalling or potholes, can pose damage to users as well as 

accelerate another mode of damage, such as corrosion on steel rebar. Texture analysis and 

shape extraction techniques are used to extract damage areas in 2D (German, 2012), and 
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multi-view geometry is applied to obtain geometry information in 3D (Koch and Brilakis, 

2011; Torok et al., 2014).  

Steel is a uniform solid material, and yet it is susceptible to environmental and 

operational conditions. Corrosion is a common source of damage in steel, causing material 

degradation. Corrosion appears as rust on uncoated, visible surfaces, and color-based 

corrosion detection and texture based corrosion have been widely studied (Lee et al., 2006; 

Chen et al., 2012; Bonnin-Pascual and Ortiz, 2014). Second, steel cracks, mainly fatigue 

cracks, occur at areas of stress concentration and frequently originate at a flaw associated 

with a weld or material inconsistency. Detection of cracks in steel can be harder than in 

concrete because the cracks have thin, shiny edges and may be invisible depending on 

lighting conditions and viewpoints. Similar to cracks in concrete, edge detection and 

segmentation techniques are used for detection of visibly obvious cracks, but they would 

require higher resolution images or large crack sizes for ready detection (Neogi et al., 2014). 

Based on these technological advances, futuristic visual inspection is motivated and 

imagined as follows. An unmanned aerial vehicle (UAV) equipped with high-resolution 

cameras arrives at a candidate civil structure for inspection. Following preliminary 

designed flying paths, the UAV collects and records images. The flying path is periodically 

updated based on previous inspection records, for example, taking more images in 

damaged areas as detected in earlier flights. The UAV transmits collected images to a base 

station. At the base station, processing takes place on the large volume of images, and 

damage to the structure is detected, localized and quantified automatically without human 

inspectors. The system automatically generates an inspection report to help expert visual 

inspectors make decisions whether the tested civil structures requires further inspection or 

prompt maintenance. By preserving and archiving such reports and decisions over the 

lifetime of the structure, the system would continue updating to be more robust and smarter 

in the inspection of the damage, reducing false alarms or misdetections. 

This study was begun by exploring the question: Given a large volume of images 

from the UAV, would it be feasible to detect damage in a realistic structure using currently 

available vision-based damage detection techniques? To answer this question, many 

photographs were taken of a steel beam having a real fatigue crack that initiated from one 

of bolt holes. Analysis of the data was performed using standard available methods in 
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literature, such as edge detectors or morphological detectors (Jahanshahi et al., 2009). As 

a result, two major issues are identified that need to be addressed for vision-based 

automated inspection, which previous researchers may or may not have observed. First, 

searching for cracks over the entire area of an image generates many false-positive alarms 

and misdetections. In Fig. 2.1(a), there are many crack-like features such as structure 

boundaries, wires, or corrosion edges, causing either incorrect damage detection or a failure 

to detect real cracks due to its narrow width. However, in these cases, detection of the real 

crack by human inspectors is not easy but is still possible. This detection is because they 

have prior knowledge about the crack’s typical appearance and characteristics. In this case, 

the relevant information is that cracks on a steel structure have thin and shiny edges and 

are often initiated and propagated from bolt holes (Indiana Department of Transportation, 

2013). These features draw their attention to bolts and nearby areas, facilitating crack 

detection. A second issue observed is that the crack may be visible or invisible depending 

on the viewpoint. Fig. 2.1(b) shows same scenes of a fatigue crack but from two different 

viewpoints. Comparing the white dotted boxes in both images, Figs. 2.1(a) and (b), the 

crack is hardly observed in the second image. Therefore, it is concluded that images of the 

same scene from many different viewpoints are needed to detect the crack without knowing 

how and where it is created and propagated. Most previous research, of course, has 

unconsciously considered these two issues as they collect images through controlling the 

circumstances, such camera positions or angles depending on appearance and location of 

cracks. However, in reality, it is hard to obtain sufficiently good images taken under the 

“best” conditions because the crack location, crack direction, and lighting direction cannot 

be known in advance, and also it is hard to precisely and continuously control camera 

positions and angles installed in the UAV. 
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In an attempt to consider the above two findings, the framework for the proposed 

technique is developed. In this study, an automated crack detection technique is proposed 

using images collected under uncontrolled circumstances. Rather than searching for cracks 

on entire images, objects which have areas susceptible to cracks (bolts in this study) are 

first detected in the images. This step greatly increases detectability of cracks by narrowing 

down searching areas and damage scales in acquired images. Object detection and grouping 

techniques used in computer vision areas are implemented to extract, match and group the 

same objects from many angles across images. Crack-like edges, which are similar in 

appearance to real cracks, are first detected from images of object areas using image 

processing techniques. Then based on prior knowledge of crack’s typical appearance and 

characteristics, a decision is made whether crack-like edges are true cracks or not. 

In this chapter, as one of visual inspection tasks, cracks occurring near bolts on a 

steel structure are detected. However, users can extend the proposed visual inspection 

framework to conduct other types of visual inspection. For example, suppose that corrosion 

or crack damage in gusset plates is damage of interest. Gusset plates become “objects” in 

this study and techniques suggested in chapter 2.2.1~2.2.3 can be applied to extract images 

of individual gusset plate from different angles. Users analyze images of all gusset plates 

in a test bridge by applying a corresponding crack detection technique.  

The major contribution of the technique is to propose a new approach to automated 

visual inspection using a large volume of images. Many previous researchers have focused 

  
(a) (b) 

Figure 2.1 Images of a fatigue crack on a steel beam captured from different viewpoints. 

Note that the fatigue crack in the images is initiated from the tip of the artificial notch 

near the bolt, which is to simulate initial discontinuity of the circumference of the bolt 
hole.  
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on detecting cracks from a few images taken from set positions where cracks are visually 

clear. However, automatic image collection using aerial cameras or other equipment, 

would not guarantee that favorable images would be obtained due to the uncertainty in 

crack’s location and direction. Instead, the proposed technique begins by searching damage 

sensitive areas from a large pool of images. By detecting these areas from many different 

viewpoints, detectability of damage can be dramatically increased even it is small, and 

false-positive alarms can be reduced by limiting searching areas.  

The remainder of chapter 2 is organized as follow. Chapter 2.2 starts from the brief 

overview of the proposed approach and provides technical details about image acquisition, 

object detection and grouping, and crack detection. Experimental descriptions and results 

are presented in chapter 2.3. Chapter 2.4 includes a conclusion. 

2.2 Methodology 

The overview of the proposed technique is shown in Fig. 2.2. First, in Fig. 2.2(a), images 

of the structure from many angles are collected using image acquisition equipment. This 

step may involve one or more possible ways of image collection such as aerial cameras or 

inspection robots. Second, in Fig. 2.2(b), target structural components called objects, which 

are susceptible to cracking damage, are detected and extracted from the images. The object 

patch indicates one such object and its nearby area where cracking damage is more likely 

to present. Third, in Fig. 2.2(c), common object patches (corresponding to the same object) 

across the collection of images are matched and grouped. Finally, in Fig. 2.2(d), the 

proposed crack detection technique diagnoses that a crack exists in the structural 

components. In this study, fatigue cracks initiated from bolt holes are chosen as target 

damage. Thus, the terms of “structure” and “object” in this chapter indicate the bridge and 

bolt, respectively. However, the proposed technique can be easily generalized to detect 

cracks from any structural components such as joints or welded areas and on any structure, 

not limited to bridges. The latest techniques in computer vision are implemented to increase 

the quality of object detection, object grouping, and crack detection. 
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2.2.1 Image acquisition 

For image acquisition, the UAV flies under or over civil structures by following a 

predetermined flying path, and cameras installed capture scenes of bridges consecutively. 

Some guidelines for image acquisition are suggested here for the best performance of the 

proposed technique but are not required: (1) Images are highly focused and have sufficient 

resolution so that objects and cracks are clearly shown in images. (2) Angles between the 

camera and bridge, called tilt or perspective angle, should not be large. Since objects on 

the bridge are commonly presented within a short distance of each other, their scenes may 

overlap on the images under a large perspective angle, making object and crack detection 

difficult. However, angle variation of the camera is necessary due to the dependency of the 

crack’s appearance on the angle of the images. (3) The distance between the UAV and 

bridge stays roughly constant. The number of scales over which the images need to be 

searched can be reduced by known approximate distances and physical bolt sizes 

(Jahanshahi et al., 2013). The computation in detail is also shown in chapter 3.2.1. This 

results in increasing object detection rates or decreasing false-positive errors with low 

 

Figure 2.2 Overview showing the procedure for the proposed damage detection 

technique: (a) acquisition of images from multiple angles, (b) detection of object patches 

which may include damage, (c) grouping of same objects across images, and (d) 
detection of crack damage initiated from objects. 
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computation time and (4) GPS data of each image is recorded and saved for approximated 

estimating crack locations.  

2.2.2 Object detection 

Object detection is challenging because an object’s position, pose, scales, lighting, and 

background vary relative to camera angles and positions. The key to object detection is the 

selection of robust features that uniquely represent the object without affecting the above 

variations. There are no perfect solutions that achieve the high level of perception of a 

human, but many researchers have improved detectability of objects such as faces or 

pedestrians (Viola and Jones, 2001; Dalal and Triggs, 2005; Dallar et al., 2009; 

Felzenszwalb et al., 2010). In this study, modifications to established object detection 

algorithms are made for our purpose. 

In this study, an integral channel based sliding window technique is applied over 

multiple scales of images. The sliding window technique uses a fixed rectangular window 

that slides over the images to decide whether the window contains an object or not. To 

make this judgment, features are extracted from each window. Here, the channel image 

indicates the linear and non-linear transformation of the original image to help discriminate 

the object from non-objects as a preliminary process of feature extraction. A total of 11 

types of image channels are used in this study: H and S components in HSV color space, 

U and V components in LUV color space, gradient magnitude, and a histogram of the 

gradient with six orientations (HOG). The details of HSV and LUV color formats can be 

seen in reference (Schanda, 2007). HSV and LUV color spaces can separate colors from 

brightness, which is not robust under lighting variation. Thus, the V component in HSV 

and the L component in LUV, which are brightness terms, are ignored from channel images.  

To consider the object shape, a gradient magnitude and HOG are used. These gradient 

features have been proven in many applications for object detection (Dalal and Triggs, 

2005; Dallar et al., 2009; Felzenszwalb et al., 2010). Fig. 2.3 shows channel images of the 

bolt. Channel images in a grayscale from Figs. 2.3(b) to (I) are computed from the original 

RGB image, Fig. 2.3(a). The intensity of these images vary depending on positions or color, 

and this variation represents the unique feature of the object patch. For example, Figs. 
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2.3(g)-(l) shows how different edges of the bolt are highlighted depending on gradient 

direction. 

Using these channel images, features of each window are computed by summing 

over a local rectangular region using Haar-like wavelets (Viola and Jones, 2001). The 

integral image provides effective ways of calculating the local sum of channel images. For 

simplicity, 1, 2, 3 and 4 rectangular Haar-like feature windows are used, which was 

proposed the original work of Viola and Jones (Viola and Jones, 2001). Features are 

computed from all training positive (object patches) and negative (non-object patches) 

windows. Further modifications, not used in this study, are possible depending on the 

complexity of object appearance and shape by increasing the number of possible 

rectangular or rotating window. 

Based on these features, a robust classifier is designed to determine whether 

features at a certain window in a test image indicate an object or not. In this study, a 

boosting algorithm is implemented to produce a robust classifier. Boosting is a way of 

combining many weak classifiers to produce a strong classifier. By updating different 

weights of weak classifiers adaptively depending on misclassification errors, the optimum 

strong classifier that minimizes misclassification errors can be obtained. There are several 

boosting algorithms introduced in the literature, but in this study, the gentle boost algorithm, 

proposed by Friedman, is used because it is known as simple to implement, numerically 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 2.3 Examples of channel images of a bolt: (a) original RGB (herein grayscale), 

(b, c) U and V components in LUV, (d, e) H and S components in HSV, (f) gradient, and 
(g-l) histogram of gradient with 6 orientations (0o, 30o, 60o, 90o, 120o, 150o). 
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robust and experimentally proven for objection detection. The details of the gentle boost 

algorithm and sample codes can be found the following references (Friedman et al., 2000; 

Torralba et al., 2004). 

2.2.3 Object grouping 

Object grouping in this study is a process of matching two or more patches with the same 

object across the images, and dividing them into groups of same object patches. If incorrect 

matching does not occur, matched object patches are simply assigned as a same group. 

However, in reality, spurious matching does not allow such simple division. Moreover, 

object matching, especially for the applications in this study, is much more difficult than 

conventional matching problems because all bolts in an image have very similar 

appearance and are closely presented, causing failures in generating unique descriptors. To 

address these difficulties, robust matching and grouping algorithms are proposed by 

integrating conventional matching algorithms and introducing a community detection 

technique for grouping. 

In general, object matching is accomplished by corresponding keypoints of object 

patches between images or select the closest object to an epipolar line after finding a 

fundamental matrix of a pair of images (Hartley and Zisserman, 2004; Lowe, 2004). 

However, in our application, a single use of these techniques produces large errors in 

matching. First, object patches having similar appearance in each image cannot be uniquely 

described by keypoints inside, causing wrong keypoint matching across images. Second, 

epipolar constraint can help to remove the worst of the non-corresponding object patches, 

but not all of them. The center of the object patch does not indicate the geometrical center 

of the object, and thus the epipolar line, which is computed from the center of the object 

patch, does not exactly pass through the corresponding object patch’s center. Moreover, 

due to the regional proximity of objects, more than one objects are close to a certain 

epipolar line, making difficult to determine a corresponding object (Hartley and Zisserman, 

2004). 

In this study, these two techniques are simply integrated for better performance on 

matching objects. Suppose that the object patch in the first image, called target object patch, 

matches with one of object patches in the second image. The object patch in the second 
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image is searched by ensuring that the distance between its center and the epipolar line 

computed from the target object patch is within a set threshold. If more than one object 

patches satisfy this criteria, keypoints inside of them are matched with those in the target 

object patch. The object patch having the maximum number of keypoints matched is 

selected as the corresponding patch of the target object patch. The integrated use of both 

keypoint matching and epipolar constraint highly improve matching performance. 

Correspondence of object patches in every pair of images are found using this integrated 

matching technique. 

Despite of the use of the proposed matching technique, not all object patches are 

correctly matched with the same object across images. The final step is grouping object 

patches based on the matching results between object patches. This structure is almost 

identical to the community structure, which is widely used in data mining from large-scale 

data describing the topology of network such as a social network. The object patches (= 

nodes) in a group (= community) have dense matching (= connection) internally but, some 

of nodes are shared with other nodes in other community due to incorrect connections. 

From the standpoint of a network structure, the problem of grouping object patches is 

considered as community detection. 

A very well-known community detection technique called modularity 

maximization is applied in this study (Clauset et al., 2004). Modularity is defined as a 

measure of the quality of particular division of a network into community. The optimum 

community structure is obtained by iteratively amalgamating communities to maximize 

modularity in a network. The adjacent matrix A, which define the connection between 

nodes, is the only input to this technique. The matrix A is defined as Aij if nodes i  and j  

are connected, otherwise 0, where Aij is the element at ith row and jth column. This matrix 

can easily be generated from the matching results. The technical details are provided in 

(Clauset et al., 2004). 

2.2.4 Crack damage detection 

The proposed crack detection technique is applied to all groups of object patches, which 

are found in the previous step, to decide whether cracks exist or not. Before introducing 

the technique, the type of crack referred to in this study should be clearly defined. The 
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crack visually has a very sharp edge and an almost straight line, and initiates from bolt 

holes on steel plates because bolt holes inherently have initial discontinuity in its 

circumference. A detectable crack in an image is one that can be detected by human vision. 

Such “preliminary” information helps to detect the crack of interest by filtering out non-

crack edges.  

The first step in the proposed approach is to remove the bolt areas from object 

patches. Each object patch found in the previous step includes both the bolt and its nearby 

area. The region of interest on each patch is the area connected to the bolt, but not the bolt 

itself. The benefits of removing the bolt area from the object patch is that crack-like edges 

are not falsely detected from the bolt area and also a threshold boundary for true crack 

edges can be made, which will be mentioned later in this chapter. Detection of the bolt on 

object patches is carried out by edge detection and binary morphology. The procedure is 

as follows: (1) A median filter is first applied to object patches to remove edges from real 

cracks or other textures, which are connected to the bolt. (2) Canny edge detector generates 

the edge image to detect boundaries of the bolt. Then, a binary edge map is obtained using 

a predetermined threshold. (3) Dilate operators using a disk structural element are applied 

to the edge map to fill gaps between edges and then, the convex hull of each connected 

entity is computed. Through this operation, several separated binary entities are generated 

from a bolt or background. (4) A true binary entity indicating the bolt is selected if it 

includes the center of the object patch. This criterion is reasonable because the object 

detector detects the bolt to be presented at the center of the window. (5) Finally, marginal 

pixels are added to the boundary of the detected entity so that it includes full appearance 

of the bolt. Example images are shown in Figs. 2.4(a) and (b). The Fig. 2.4(a) is the detected 

object patch from chapter 2.2.2 and 2.2.3. Following the above procedure, the area of the 

bolt in the object patch is detected in Fig. 2.4(b). Subsequent analysis is conducted on the 

area of the outside of the detected binary entity (object area). 
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The second step is detecting crack-like edges. In this study, the Hessian matrix 

based vesselness measurement technique, called Frangi filter, is used to detect crack-like 

edges. The approach is based on the fact that a crack on steel has a thin and bright line, 

similar to the appearance of vessel in medical images. The Hessian matrix based edge 

detector does not produce double edges making good localization, and thus multi-scale 

crack detection is possible (Frangi et al., 1998). The brief outline of the Frangi filter is first, 

a Hessian matrix of the image is computed using a Gaussian derivative at multiple scales. 

Then, two eigenvalues, 1  and 2 , of the Hessian matrix each pixel of the image are 

derived ( 1 2| | | |  ). An ideal crack edge on image is 2 0  and 1 2| | | |  , and the sign 

of 1  is negative because crack is a bright edge. The strength of crack-like edges, V , is 

defined as,  
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where   and c  are user-defined parameters, 2 1/BR   , and 
2 2

1 2S    . For 

example, if the edge is close to the ideal crack edge, BR  goes to zero and S becomes large, 

and thus V  is close to 1, which is the maximum of V. The final edge map can be obtained 

by thresholding and removing edges connected to the border of the object patch. Fig. 2.4(c) 

shows the result of crack-like edge detection from the outside of the bolt area in the object 

   

(a) (b) (c) 

Figure 2.4 Examples of bolt area and crack-like edge detection: (a) object patch including 

a bolt and its nearby area, (b) detection of a binary entity (white area) indicating bolt, 
and (c) crack-like edge detected from the outside of the object area using the Frangi filter. 
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patch, Fig. 2.4(a). The technical details about the Frangi filter are provided in (Frangi et al., 

1999). 

The remaining two steps are to detect real crack edges from non-crack edges using 

prior knowledge of crack’s appearance because the Frangi filter detect several edges having 

similar appearance with cracks, as shown in Fig. 2.4(c). The third step is filtering out 

spurious non-crack edges using region-based shape characteristics. All connected 

components in the binary edge image, obtained in the previous step, are identified using 

connected component labeling. Among these connected components, the crack-like edges 

are differentiated using their shape descriptors. For example, fat and short edges or zigzag 

are not real crack edges. The shape descriptors used in this study is eccentricity, which is 

defined as the ratio of major to minor axes of a connected component and evaluate 

elongation of edges (Yang et al., 2008). A threshold, which represents the minimum 

eccentricity, is first set to filter out non-crack edges. Then, one strong edge line, which has 

the largest regional area, is detected. Fig. 2.5(a) shows the detected edge line from Fig. 

2.4(c) using these two criteria. 

As a final step, the detected crack-like edge, called strong crack-like edge, is 

evaluated as to whether it is the true crack or not. This decision is made based on the 

assumption that crack is initiated from the bolt hole, and has a relatively straight line as 

mentioned in the previous chapter. Suppose that the axis perpendicular to the detected edge 

goes through the center of the object. When the object (or object boundary) is projected 

onto this axis, the range of the object projected on the axis can be computed. If the detected 

edge is the true crack, the line, which is drawn on the edge, will cross the axis within this 

range. This concept is successfully implemented using the Radon transform. The Radon 

transform in two dimensions is the integral projections of images along specified direction 

(Deans, 2007). In the computer vision community, the Radon transform is used for line 

detection such as the Hough transform. In this application, the maximum value of the 

Radon transformation image indicates the direction and position of the detected edge line. 

Fig. 2.5(a) shows the detected crack-like edge and object boundary computed from Fig. 

2.4(a). Radon transformation of the strong crack-like edge image is shown in Fig. 2.5(b). 

The dotted line is the range computed from projecting object boundary. The maximum 

value of the transformed image indicates the edge’s direction and location on an angled 
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axis, respectively. The axis angle of the maximum point in Fig. 2.5(b) is around 140o and 

is perpendicular to the line of the edge. The true crack is determined if the maximum point 

is located inside of the range obtained by projecting object boundary onto this axis. This 

criterion may not perfectly classify all true cracks from crack-like edges because non-crack 

edges also exist in the similar position of true cracks. However, it can successfully remove 

most non-crack edges. 

2.3 Experiment Validation 

2.3.1 Description of the experiment 

A large scale, rusted I-beam having 68 bolts, as shown in Fig. 2.6, is used for validating 

the proposed technique. As shown in introduction, a real fatigue crack is almost visually 

similar to a sharp scratch. Instead of producing real fatigue cracks on the beam, two 

artificial scratches are made with an awl at locations A and B in Fig. 2.6. Test images of 

the beam are taken using a Nikon D90 camera with 18-105 mm lens, and zoom and flashing 

functions are not utilized. All 72 test images having 4,288 x 2,848 resolution are 

sequentially taken at roughly 2~3m working distance, which is between the camera and 

beam, and do not have much tilt angles due to the issues in chapter 2.2.2. For the object 

detection and grouping, downsized images with low resolution having 1,716 x 1,149 are 

used for fast computation. However, once the areas of object patches are detected, those 

are cropped from the full resolution images for accurate crack detection.  

  

(a) (b) 

Figure 2.5 Examples of crack detection using Radon transformation (a) one strong crack-

like edge with the object boundary and (b) Radon transformation of the strong crack-like 
edge and the range computed from the object boundary.  
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Five randomly selected test images among the 72 images are used for training. A 

square of 68 object patches are cropped from these images. 144 negative patches, which 

are three times of a number of positive patches, are randomly cropped from the non-object 

areas. 500 Haar-like features in each object patch are randomly selected with respect to 

positions, sizes, and types. Thus, 5,500 features can be generated in each object patch, 

given by the product of 11 channel transforms and 500 Haar-like features. A “strong” 

classifier is trained with 200 weak classifiers, which are enough to ensure convergence of 

classification. 

For the sliding window technique, rough estimation of the size of the object patches 

in the images in advance can reduce computation time and false-positive detection. For 

example, suppose that the size of object patches in image is unbounded, all scales of test 

images are scanned, which is a very time consuming process. In this study, based on the 

physical bolt size and approximated working distance, the range of the bolt size on the 

downsized images is found to be 64~128 pixels. Consequently, the final scale is set to 2 

with 2 1/5 scale steps, causing a total of 6 scales. For object detection, test images are 

downsized with these scales so that the different sizes of bolts in the images can be detected.  

All algorithms proposed in this study are implemented using MATLAB. VLFeat, which is 

an open source library of computer vision algorithms, implements the SIFT algorithm with 

MATLAB interfaces (Vedaldi and Fulkerson, 2010). Each image makes pairs with the next 

5 images in the set of sequential images. The matching criterion of keypoint descriptors 

proposed by VLFeat, called VL_UBCMATCH, is used with a threshold of 2.5. If the 

 

Figure 2.6 A test steel beam including 68 bolts. 
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number of matches is less than 30, the fundamental matrix of this pair of images is not 

computed and this pair of images is not considered further during object matching. Using 

matched keypoints of an image pair, a fundamental matrix for this pair is computed using 

a normalized eight-point algorithm and RANSAC. If the number of remaining matches is 

less than 25, this pair is also not considered for object matching. The threshold of the 

epipolar constraint for matching is set to 181 pixels, which is the diagonal distance of the 

maximum size of object patches. For grouping object patches, if a group includes less 3 

than object patches, this group and its object patches are removed and excluded from a list 

of object patches for damage detection. All object patches cropped from original test 

images are resized as 240 x 240 pixel. As a rule of thumb, a threshold for Canny edge 

detection is set to the high and low thresholds to products of 0.2 and 0.5 to the median 

value of the grayscale object patch, respectively. The size of the median filter for removing 

the crack edge for detecting object areas is a 5 x 5 square. A disk structure element having 

eight-pixel diameter is used to dilate images, and 10 pixels of the border margin are used. 

For the Frangi filter, parameters   and c  are set to 0.5 and the maximum Hessian norm, 

respectively, presented in the original work and the threshold is 0.90 (Frangi et al., 1998). 

Scales of the filter is up to 3 pixels with 0.2 pixel step, which means the edges less than 6 

pixels are more enhanced. For the shape descriptor, the minimum eccentricity is set to 8. 

Note that all parameters and thresholds are not automatically determined. Users should 

tune the parameters for different uses based on ones that authors suggested in the training 

step and by gaining experience. Values used are selected based on tests with an initial set 

of training images. However, this simple process is conducted just once, and then the 

selected values are used for future visual inspections without further tuning. 

2.3.2 Description of the experiment 

A total of 1,326 bolts are shown in all of the collected test images. Bolts having partial 

occlusion or distracted by foreign objects are removed before counting. The resulting 

object detector proposed in chapter 2 achieves a 98.7% detection rate (1,310 object patches) 

and a 6.8% false-positive detection (91 non-object patches). The proposed object detection 

technique successfully attains a high rate of true detection and minimize false-positive rate. 

Fig. 2.7 shows samples of detected bolts and false-positive detection. 
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(a) (b) 

Figure 2.7 Examples of bolt detection results from test images: (a) true detection of bolts 

and (b) false-positive detection. 

 

Table 2.1 Results of object detection and grouping 

Object detection Object grouping 

# of true object patches: 1,326  

# of true-positive detection: 1,310 

# of true-negative detection: 16 

# of false-positive detection: 91 

# of matching: 2,922 

# of object groups: 68 

# of object groups: 72 (with 4 overlaps) 

# of non-object groups: 5 

 

Table 2.1 shows the results of object detection and grouping. Based on the proposed 

matching and grouping techniques, 2,922 connections (= matching) between nodes 

(=object patches) are found and 77 communities (= groups) are detected. All 68 bolts are 

successfully grouped and 5 non-object groups are produced, which are visually similar to 

bolts. Here, 5 non-object groups come from false-positive detection in the object detection 

step. Since the non-object patches are consistently detected across images, these are finally 

classified as a group. To avoid this problem, these non-object patches are used for training 

as negative samples, not to be detected in future testing. Moreover, there are 4 communities 

overlapping, which means two communities indicate the same bolt. These discrepancies 

come from weak connections between sets of nodes in a same group, and could be 

overcome by increasing the number of pairs of each image for matching, but it would be 

computationally expensive. A total of 1,147 object patches from 77 communities are 

grouped and the remaining ones are removed due to a lack of nodes in their allocated group. 

Fig. 2.8 shows groups of object patches having a crack associated with locations A and B 
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in Fig. 2.6. Detected object patches prove the necessity of images from different viewpoints. 

Only a couple of patches show clear cracks that are visually recognizable. 

 

  

(a) (b) 

Figure 2.8 Resulting groups of object patches at crack locations A and B in Fig. 2.6. 

The proposed crack detection technique is applied to object patches in each group. 

There is a trade-off between true and false-positive detection depending on the threshold 

of the Frangi filter and Canny edge detector because these two parameters determine crack-

edges and the decision boundary, respectively. However, regardless of these variations, 

cracks are constantly detected from at least one of the object patches in the groups showing 

locations A and B. Example results are shown in Fig. 2.9. Fig. 2.9(a) and Fig. 2.5(a) 

represent object patches and crack detection with object boundaries from locations A and 

B. The lines of true crack edges pass through the object areas. Fig. 2.9(b) is one of the 

false-positive detection results. The machine generated scratch next to the bolt, which is 

not induced by authors, is visually similar to a real crack. However, it is not a true crack 

and was originally present in the test structure. This is a limitation of the proposed 

technique, but based on visual information only, this scratch would be challenging to 

differentiate from a real crack, even by human inspectors. 

    
(a) (b) 

Figure 2.9 Examples of crack detection results: (a) true crack detection and (b) false-

positive crack detection.  
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2.4 Conclusion 

In this study, a vision-based crack detection technique is developed for automated 

inspection of large scale civil structures only using images. Such images are collected from 

an aerial camera without advanced knowledge of the crack’s locations or special control of 

their positions or angles. The study focuses on processing these images to identify the 

presence of damage on structure. The key idea is extracting images of damage sensitive 

areas from different angles so as to increase detectability of damage and decrease false-

positive errors. To achieve this goal, object detection and grouping techniques, which are 

used in the area of computer vision, are implemented to extract images of possible damage 

regions. Using these images, the proposed damage detection technique can successfully 

detect cracks regardless of the small size or the possibility of their not being clearly visible 

depending on the viewpoint of the images. The effectiveness of the proposed technique is 

successfully demonstrated using images of a large scale, rusty, steel beam with cracks using 

a handheld camera instead of one mounted on a UAV. In the future, the proposed technique 

will be validated using images of real civil structures collected from a UAV  
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CHAPTER 3. AUTONOMOUS IMAGE LOCALIZATION FOR 

VISUAL INSPECTION OF CIVIL INFRASTRUCTURE 

3.1 Background 

This study was initiated by exploring the feasibility of several established visual inspection 

techniques for use with a large volume of images automatically collected by sensing 

platforms like UAVs, in terms of their potential for meeting the objectives of this futuristic 

vision-based visual inspection of civil infrastructure. Despite the dramatic advances made 

in vision sensors and UAVs, a significant gap is identified in their practical implementation 

at this time: a significant number of erroneous false-positives (Yeum and Dyke, 2015). 

Automatic image collection using UAVs provides no guarantee to selectively collect 

favorable images for visual inspection. The limitations are mainly due to insufficient 

accuracy of camera location (GPS) and rotational angle measurements. Only a very small 

fraction of the images or region in each of the images will actually be relevant and useful 

for visual inspection purposes. More importantly, due to large variations in the image 

scales, it is inevitable that existing techniques will be applied over multiple image scales 

(image pyramid) or a sliding window (Lindeberg, 1994; Viola and Jones, 2001; Dalal and 

Triggs, 2005), which are often computationally expensive and hindered by large-size files. 

In such circumstances, although existing damage detection techniques may not miss the 

presence of damage, a large quantity of false-positives will also be detected among the few 

true-positives detected. In other words, a high portion of the images found to contain 

damage will not actually contain damage. Of course, the goal of inspection is structure 

safety, and the detection of true damage far outweighs the possibility of false-positive 

errors in the visual inspection. However, a high ratio of false-positive images means that 

human inspectors will need to spend valuable time looking through a large number of 

irrelevant images to find the true positives, leading to wasteful consumption of the very 

time that was meant to be saved by using automation. Overall, the high likelihood of false-

positives when these methods are used in isolation reduces the trustworthiness and 

efficiency of these methods. Alternative procedures, such as using pre-processing 

techniques for localizing relevant areas on images, need to be incorporated into the 

procedures.  
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In this study, an image localization technique is developed to automatically extract 

the regions of interest (ROIs) on each of the collected images named RILVI (ROI Image 

Localization for Visual Interrogation). The ROIs on the images are computed based on the 

3D geometry of the images with respect to targeted regions of interest (TRIs) in the 

structure. The geometry is computed using a structure-from-motion (SfM) technique. 

Vulnerable components or areas in a test structure to be examined would be assigned as 

the TRIs. The ROIs are then automatically cropped and scaled before applying vision-

based visual inspection techniques, ensuring that efficient analysis and reliable outcomes 

are facilitated.  

An important contribution of the proposed technique is to develop a technique to 

facilitate real application of existing damage detection techniques on large volumes of 

actual images collected from UAVs. In spite of the variety of automated vision-based 

visual inspection techniques proposed in civil engineering, unfortunately, real 

implementations using UAV images are quite limited to date due to large variations in scale, 

pose, lighting conditions, and background at the time of image collection. Rather than 

processing entire images, RILVI focuses on and localizes ROIs, which will then be used 

for visual inspection. Since the ROIs on images are estimated based on geometric 

relationship, not by object recognition, any shape and size of components and regions may 

be assigned as the TRIs. Moreover, extracting a small set of ROIs can greatly reduce the 

rate of false-positive errors that are likely to be generated from the analysis of irrelevant 

areas. Moreover, from a different perspective, as the transition is made to automated visual 

inspection, this technique will also serve to assist human-based visual inspection. By 

avoiding the unnecessary processing of immense volumes of images, RILVI provides a 

confined number of valuable localized ROIs, allowing intensive visual inspection without 

the distractions generated by irrelevant areas on images.  

The remainder of this paper is organized as follows. Chapter 3.2 begins with the 

overview of the proposed method and discusses detailed steps including image acquisition, 

projection matrix estimation, 3D coordinate transformation, and the localization of ROIs 

on images. In chapter 3.3, the capability of the RILVI technique is demonstrated using a 

full-scale highway sign truss for the application of weld inspection. Chapter 3.4 includes 

the summary and conclusions.  
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3.2 System Overview 

The overview of RILVI is presented in Fig. 3.1. The objective of the technique developed 

here is to automatically extract ROIs from the large volume of original images collected 

by UAVs. The ROIs are the portions of each of the images that contain the TRIs. The TRIs 

can be anywhere in the structure, but they would likely be assigned to encompass the 

failure-sensitive areas set forth in the inspection manual. The locations of the TRIs are 

easily obtained from a geometric model (e.g., drawings or 3D model) or from actual 

measurements from a physical structure in advance.  

First, in Fig. 3.1(a), images of the structure are collected from many viewpoints and 

positions using UAVs. Several variables should be considered to be sure to collect suitable 

images for visual inspection, including flight configuration (e.g. flight speed or flight path), 

camera setup (e.g. shutter speed or focal length), and/or some guidelines that will be 

discussed later for successful implementation of the proposed technique. Second, in 

Fig.3.1(b), a projection matrix (camera matrix) of each image is estimated using SfM. The 

projection matrix includes information about camera location and orientation in 3D 

coordinates (extrinsic orientation) and internal camera parameters (camera calibration 

matrix), describing the mapping of 3D points in the world to 2D points in each image 

(Hartley and Zisserman, 2004; Snavely et al., 2008; Szeliski, 2010). In Fig. 3.1(c), this step 

is performed to transform the coordinate system of the constructed SfM model (defined as 

the SfM coordinate) to the coordinate system which is used to define the coordinate 

information of the TRIs (defined as the TRI coordinate). Then, the projection matrix and 

TRI are represented in the same coordinates. Lastly, in Fig.3.1(d), the ROIs are extracted 

from the original images using the geometric relationship between the cameras (image) 

and the TRIs. The overall process here is designed to be fully automated without the need 

for any human intervention during the image collection and processing.  



31 

 

 

Figure 3.1 Overview of the technique developed (RILVI): (a) acquisition of images from 

multiple viewpoints and positions, (b) estimation of a projection matrix in each image 

using a structure-from-motion (SfM) technique, (c) 3D coordinate transformation for 

alignment and scale matching, and (d) extraction of the regions of interest (ROIs) on all 

images collected in (a).  

3.2.1 Image acquisition 

The manner in which the images are acquired will strongly influence their usefulness for 

the subsequent steps in the technique, and ultimately for damage detection. Herein a simple 

model of a camera is considered, and the conditions to yield favorable images are outlined. 

During image acquisition, two major guidelines should be followed for successful 

implementation of the technique developed here.  

First, the most important guideline is to collect images with good visibility of the 

TRIs. Visibility of the TRIs on a subset of the images is a vital prerequisite for automated 

vision-based visual inspection. Visibility of the TRIs on UAV images is mainly affected 

by a couple of factors: working distance, motion blur, and occlusions. The maximum 

allowable working distance is computed to guarantee sufficient size of the ROIs. The ROI 

size decreases as the working distance increases. Fig. 3.2 and Eq. (3.1) explain how to 

determine the maximum allowable working distance for designing UAV flight paths under 

given camera model parameters, and the physical size and minimum resolution of ROIs: 
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where WD (mm) is the maximum allowable working distance, called the distance threshold, 

FL (mm) is a focal length, SR (pixel) is the resolution of the whole image, TS (mm) is the 

physical size of the TRI on the TRI plane, which is a/the major plane of the TRI in the 3D 

space, SS (mm) is the camera (image) sensor size, TP (pixel) is the minimum size of the 

ROIs on images required for visual inspection, α (radian) is the angle between the image 

and the TRI plane, and β (radian) is the angle between the image plane and the ray from 

the ROIs boundary on the image. TP is often computed using a required accuracy 

represented by pixels per physical length (e.g. 1 pixel/1 mm) and thus a TRI with a large 

physical size will require high resolution on the image. Since α and β are randomly 

determined based on the physical geometry and locations of the ROIs, WD is computed by 

simulating various combinations of α and β. An example calculation for WD will be 

illustrated in chapter 3.3. Note that WD is understood as a threshold for the distance 

between the TRIs and cameras to ensure valid and useful ROIs will be obtained. For a 

collection of images using UAVs, a larger WD is always preferred for safe flight by 

increasing FL and/or SR or decreasing α and/or SS if sufficient TP is guaranteed. However, 

since a large FL will result in a small field of view, the images may not have enough overlap 

with each other, degrading the SfM outcome. Also, a large SS has good low-light 

performance and sharpness to describe fine details, but SS typically increases with SR. Thus, 

both high SR and large SS are recommended (e.g. full frame sensor with high resolution). 

Note that other environmental conditions (e.g. motion blur, low light conditions) may 

degrade the quality of the images (may require higher TP), and α and β cannot be known 

before flying/acquisition. Therefore, WD is not a precise value that users need strictly 

follow. However, enforcing this threshold will greatly help to plan a flight path that 

facilitates collection of more useful images.  
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Figure 3.2 Estimation of the maximum allowable working distance in a pinhole camera 

model. 

Motion blur is an effect that occurs when an object being recorded moves during 

the exposure time of the camera. Unwanted vibration of the UAV platform transmitted to 

the camera and/or a fast flying speed under a close working distance will likely produce 

blurry images. However, these problems can be alleviated by stabilizing sudden 

movements using a multi-axis gimbal, and configuring a fast shutter speed (New America, 

2015). Taking pictures under good weather (lighting) conditions is also recommended to 

increase the shutter speed of the camera.  

Occlusion is an unavoidable corruption mode frequently occurring in a structure 

having complex geometry. Structural components will impede the view of the TRIs at 

certain camera locations and angles. To mitigate this problem, either the angles between 

the camera direction and the TRIs should be small, or more images should be collected 

from different viewpoints. Including several angle variations in image collection are also 

important for successful vision-based visual inspection (Yeum and Dyke, 2015).  

Next, image collection guidelines are also delineated here for the SfM procedure to 

ensure that the projection matrix in each image is accurately estimated. Projection matrices 

are computed using corresponding feature points shared across collected images. Sharing 

many features between images can reduce erroneous estimation. As a rule of thumb, at 

least 60% overlap is highly recommended between neighbor images (Kraus, 2011). 

However, configurations yielding such a high overlap cannot easily be attained under a  

close working distance, with a long time interval between images, or at fast flying speeds 

because such conditions produce large scene changes between images. Collecting a large 

number of high-resolution images with a fine time interval is often recommended but, 

adversely, it is computationally expensive. Thus, users need to balance these parameters to 

SS

FL WD
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achieve accurate and efficient implementation of SfM. Additionally, capturing both the 

target structure and stationary background in the images may be helpful to increase the 

overlap between images as the background is usually far away from the camera location, 

producing slow scene changes between images. Thus, the overlaps present within the 

sequence of the images are increased (Ozden et al., 2010). 

3.2.2 Estimation of the projection matrices 

The next step in the technique is to estimate a projection matrix of each camera. The 

projection matrix describes the mapping of a pinhole camera from 3D points in the world 

to 2D points in an image. The projection matrix includes intrinsic orientation including 

focal length or principle points, and extrinsic orientation including rotation angles and 

location in 3D. SfM automatically computes the 3D geometry of the scene (point cloud), 

projection matrix, and lens distortion parameters. The major advantage of SfM is that all 

these parameters and data are generated without the need to augment the structure with 

networks of targets with known (or even unknown) 3D positions, which are generally 

required in conventional photogrammetry-based survey methods. Once users collect a set 

of good photos by following appropriate guidelines, projection matrices can be estimated 

without preliminary measurements or calibration (Hartley and Zisserman, 2004; Snavely 

et al., 2008; Szeliski, 2010).  

SfM has had a broad array of applications ranging from image-based 3D modeling 

to aerial mapping applications. In civil engineering, SfM is often implemented for survey 

applications using UAVs (Westoby et al., 2012), but it has also been explored for 

applications related to geometric damage detection based on 3D reconstruction (Torok et 

al., 2014), crack quantification (Jahanshahi et al., 2013) or tunnel lining image stitching 

(Chaiyasarn et al., 2016). Recently, SfM has become a well-established technology and 

some popular commercial software packages exist, such as Pix4D (Pix4D, 2016), 

Photoscan (Agisoft, 2016), or ContextCapture (Bentley, 2016), and non-commercial 

software, such as VisualSfM (Wu, 2013), OpenMVG (Moulon et al., 2012). Regardless of 

the differences in functionalities in these tools, and their optimization for specific 

applications, in general, the input to SfM is a set of images and the outputs are the 

associated projection matrices (constructed by several internal and external camera 
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parameters) and the 3D point cloud. Almost all commercial and non-commercial software 

can export these outputs in a readable format. In our study, the projection matrices are only 

used to analyze the geometric relationships between cameras (images) and the TRIs. 

The projection matrix is a 3x4 matrix, denoted as P, and the following relation holds  

    1, 2, ..., S S

i ix P X i n  (3.2) 

These matrices are expressed in homogeneous coordinates (Hartley and Zisserman, 2004). 

SX  is a point in the 3D SfM coordinate system (a 4-dimensional vector) and the 

superscript s indicates the SfM coordinate, which is an arbitrary coordinate assigned by the 

software if the coordinate is not designated. i

SP  is the projection matrix of the ith image 

among a total of n images. ix  is a point on image i and is typically defined as pixel values 

(a 3-dimensional vector). Lens distortion should be corrected in advance so that all images 

hold the relationship in Eq. (3.2) based on the pin-hole camera model. Simply, Eq. (3.2) 

represents the fact that any arbitrary 3D point can be mapped to each image provided the 

projection matrices are defined in identical coordinate systems.  

3.2.3 Transformation of the coordinate system  

When no GPS data is used for initialization and no coordinates are assigned to the images, 

projection matrices defined in the SfM coordinate system do not have scale, position, and 

orientation information. The SfM coordinates should be transformed into the known 

coordinate system where the locations of the TRIs are defined (the TRI coordinates) to use 

Eq. (3.2). For this transformation, use of the same 3D points is required, with both defined 

in the different coordinate systems of the SfM and TRI.  

In typical scenarios, fiducial markers are installed on the structure with known 

locations in the TRI coordinate system, such as corners or midpoints of elements. The 

fiducial markers are designed to have clear visibility on the images for accurate localization. 

Having fiducial markers visible on two or more images produces their 3D locations in the 

SfM coordinate using triangulation (Hartley and Zisserman, 2004). Users can manually 

identify and relate the points of these fiducial markers on images or use coded fiducial 

markers for automated matching and correspondence, as done in the software of 

Photomodeler or iWitness) (iWitness, 2016; Photomodeler, 2016). However, in the case of 
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coded target applications, the target size should be large enough so that the code (identity) 

can be recognized using image processing algorithms. If the locations of the TRIs are 

defined as GPS coordinates (e.g. WGS84), initialization of the GPS data stored in the 

acquired images would be helpful, but additional calibration using known 3D locations are 

still required due to current limitations in GPS accuracy (Pix4D, 2016). 

Once the 3D points in SfM and TRI coordinates correspond, a 3D coordinate 

transformation (scaling, translation, and rotation) is performed using Horn’s method, 

which is a closed-form solution of the absolute orientation (Horn, 1987). The 

transformation matrix, denoted as M (a 4 x 4 matrix) in the homogeneous coordinate 

system, is computed, which can map a point in the SfM coordinate system to a point in the 

TRI coordinate system. The following relation holds 

T SX MX  

where 
TX  and 

SX  are any corresponding 3D points (a 4-dimensional vector) defined in 

TRI and SfM coordinates, respectively. For the 3D coordinate transformation, a total of 

seven unknown parameters, including three degrees-of-freedom for both translation and 

rotation and one degree-of-freedom for scaling, can be estimated using more than three 

corresponding points. As a rule of thumb, those points are evenly located over the structure 

and visible in many images to minimize estimation errors in the transformation (Hartley 

and Zisserman, 2004). The projection matrix is also transformed as follows: 

1
i i

T SP P M 
 

where 
TP  is a projection matrix defined in the TRI coordinate system after transformation 

from the SfM coordinate system. This relation can be derived from the fact that the 

corresponding 3D points in the TRI and SfM coordinate are projected to the same image 

points, represented as T T S SP X P X . 

3.2.4 Localization of the ROIs on images 

Using the prior steps, the projection matrices and the TRI locations are now represented in 

the identical TRI coordinate system. 3D points in the TRI coordinate system and their 

projected points on the images are associated by the relationship in Eq. (3.2) (although the 

superscript S is replaced with a T after the coordinate transformation). With this, users can 

define any shape and location for the TRIs using known 3D points. These can range from 
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a line (e.g. plate joints, weld connections), surface (e.g. steel plate for corrosion inspection, 

concrete deck for cracking inspection), to a space or 3D object (e.g. bearing, component). 

A simple geometry like a line or rectangular flat surface requires only a few 3D points to 

describe its geometry (e.g. two 3D points define a 3D line). However, it would be a 

challenge to describe the complex geometry of more intricate TRIs such as a complex 

polygon, a curved surface or a circular line, which may require thousands of 3D points or 

even a mathematical representation in 3D. For example, as our target TRIs in chapter 3.3, 

a weld connection between a cylindrical brace and the main chord forms a circular line in 

3D space. It is hard to define the exact shape of the weld (welding line between two tubular 

components) using 3D points, and it would be time-consuming to manually assign all those 

points on the weld. The localization of images in this study is not intended for extracting 

the exact shape or boundary of the TRIs. Rather, our goal is to find bounding boxes on 

images where entire regions of TRIs are tightly enclosed for further inspection, and those 

bounding boxes become ROIs in this study. 

In this study, a generalized and straightforward solution is designed by 

implementing a virtual sphere. As shown in Fig. 3.3, a virtual sphere is used for estimating 

the bounding boxes of the TRIs on the image, which tightly encloses them. A virtual sphere 

defined at each of the TRIs is projected to the images, and find the location and size of the 

bounding box. The benefits of this virtual sphere in the definition of the TRIs are that only 

two parameters, a 3D center location and a radius, are required to define each of the TRIs, 

regardless of the actual complexity of their geometry. For example, when straight or curved 

lines are assigned as TRIs, its 3D center location and the radius of the virtual sphere that 

encloses them are easily obtained. Ultimately, this virtual sphere can apply to any arbitrary 

shape (region) for the TRIs. The idea of the virtual sphere is developed here for ready 

implementation to a wide variety of inspection problems. However, if more precise 3D 

point information of the TRIs is known, the ROIs on the images can be directly computed 

from Eq. (3.2) without using this virtual sphere. 
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Figure 3.3 Projection of a virtual sphere to an image. 

The size and location of the bounding box can be computed based on knowledge 

of the projection matrices and the TRI locations in the TRI coordinate system (hereafter, 

the TRI location indicates the 3D center location and radius of its virtual sphere). The 

bounding box is the smallest rectangle containing the ROI of the virtual sphere of the 

corresponding TRI on the images. The detailed derivation of the bounding box size and 

location is provided below.  

In this study, a sphere projection model is introduced to compute the size of the 

bounding box that tightly encompasses each of the ROIs on each of the image (Guan et al., 

2015; Sun et al., 2016). This model is originally developed for calibrating cameras when a 

spherical fiducial target is used for correspondence between images. Here the goal is to 

compute a projected area on an image corresponding to a virtual sphere defined in the TRI 

coordinate system, when all camera model parameters including interior and exterior 

parameters and lens distortion parameters are preliminarily obtained using SfM. 

 

Figure 3.4 Geometric relationship between a sphere in the TRI coordinate system and a 

projection area in the image coordinate system. 

Fig. 3.4 describes the sphere projection model. Suppose that the virtual sphere, 

assigned as a TRI is located at the center S, having a radius of the length of the line segment, 
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SD . All points in Fig. 3.4 are defined in the TRI coordinate system. The projection matrix 

P , obtained using SfM, is decomposed into a 3 x 3 camera calibration matrix (K), a 3 x 3 

rotation matrix (R), a 3 x 3 identity matrix (I), and a 3 x 1 vector of the camera center, (C), 

shown in Eq. (3.3). The tilde on C indicates an inhomogeneous 3-vector representation. 

Each of matrices (or vectors) are obtained from the output of SfM, but if the software only 

provides the projection matrix, a singular value decomposition (SVD) can be similarly used 

(Hartley and Zisserman, 2004). In Eq. (3.3), the camera calibration matrix consists of four 

parameters, where x  and y  represent the focal length of the camera, and ( 0x  and 0y ) 

are a principal point in terms of pixel dimensions in the x  and y  directions, respectively. 
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(3.3) 

The projection of the sphere on the image generates an ellipse at the center R, which 

is the projection of S on the image. An arbitrary point, E, located on the boundary of the 

ellipse, is a projection of D. D is the point where a (tangential) line from the camera center 

and the sphere meet. Thus, Point E satisfies Eq. (3.4), as illustrated in (Sun et al., 2016). 

Eq. (3.4) is derived using the fact that DCS ( ) is constant with respect to Point D. In 

Eq. (3.4), x  and y  correspond to the point E on the image plane in pixels and [ , ,   ] is 

a unit direction vector of CS ( RS ), which means 
2 2 2 1     .  
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To compute the smallest rectangle that encompasses the ellipse, generated from Eq. (3.4), 

Eq. (3.4) is first simplified as Eq. (3.5) by introducing new variables:  
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The bounding box enclosing the ellipse consists of four lines each with a slope of 

either 0 or ∞. With this relation, Eq. (3.5) is represented as a single variable. For example, 

the derivative of Eq. (3.5) with respect to x  becomes:  
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(3.6) 

When the numerator of Eq. (3.6) becomes 0 (horizontal tangent line), the solutions 

of Eq. (3.6) define the two points at which the top and bottom horizontal lines of the 

bounding box meet the ellipse. Thus, the difference between their y values become the 

height of the bounding box, as shown in Eq. (3.7.2). Similarly, when the denominator of 

Eq. (3.6) becomes ∞, the solution of Eq. (3.6) defines the two points at which the left and 

right vertical lines of the bounding box meet the ellipse. The width of the bounding box is 

computed using Eq. (3.7.1). 
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Finally, ( , )x y

ij ijx x  and ( , )x y

ij ijBB BB are obtained, which are the 2D center location and 

the size of the bounding box on the images, respectively, where i indicates the image index 

and j shows the index of the TRI. The superscript illustrates the x and y coordinates on the 

image. 

However, not all acquired images include TRIs, and they are not useful for visual 

inspection unless they are visible. The TRIs must be adequately visible on the images. Thus, 

the following two constraints should be satisfied. Constraint 1: min( , )x y

ij ijBB BB  should be 

larger than jTP . Low resolution ROIs are not useful for visual inspection and are likely to 

produce unwanted false detection. Thus, the minimum side of the bounding box should be 

larger than jTP , which is the minimum resolution of the ROIs, required for visual 

inspection in Eq. (3.1). Constraint 2: Each bounding box should be entirely visible on the 
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image. In another words, the following relation should hold 0 0.5x x

ij ij ix BB w     and 

0 0.5y y

ij ij ix BB h     where iw and ih  are the width and height of the image i. Bounding 

boxes are selected in each image when they satisfy the above two constraints.  

3.3 Experimental Validation  

A full-scale highway sign structure, shown in Fig. 3.5(a), is used for validating RILVI. 

This structure was originally built for supporting highway message signs and was 

previously installed for use on the highway. Currently, it is located inside the Bowen large-

scale structural laboratory facility at Purdue University (Bowen Laboratory, 2016). 

3.3.1 Description of experiment 

  

(a) (b) 

Figure 3.5 Description of a full-scale highway sign structure: (a) dimensions of the 

structure and layout of the circular fiducial markers for 3D coordinate transformation, 
and (b) two different sizes of the welds defined as TRIs. 

This segment of the full-scale high way sign structure is composed of six cubic segments. 

It has four main chords, twenty-eight vertical braces, twenty-four diagonal braces, and 

seven internal diagonal-to-main chord braces. All braces are tubular sections. The 

diameters of the main chord, vertical brace, and diagonal (including internal) brace are 

152.4, 63.5, and 76.2 mm, respectively. All braces are connected to the main chords by 

welds, for a total of 118 welded connections. These welded connections are assigned as the 

TRIs for purposes of validation of RILVI. The structure generally has a clean surface 

condition with no unusual corruption or damage to its components.  
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The fillet weld connections between the braces and main chords are selected as our 

target TRIs. As shown in Fig. 3.5(b), since cylindrical braces and chords are attached, the 

shape of the weld is a warped circular line. The specific shape and size of each weld line 

depend on the diameter of the brace and angle from the main chords. All weld connections 

can be divided into two types in Fig. 3.5(b). The two types have different center location 

values, but their radius is either 31.75 mm (Type 1) or 50.5 mm (Type 2). The internal 

diagonal braces, to be more precise, are attached to a junction plate and the shape of their 

welded connection is a straight line. However, its size is identical to Type 1, the diameter 

of the brace. Type 2 connections are larger than the radius of the diagonal brace due to the 

angled attachment. Here, the center location of each TRI is obtained from a 3D drawing of 

the structure. Thus, the TRI coordinate system is the same as the coordinate system in the 

drawing (model). For an actual implementation in which there is greater uncertainty in the 

as-built dimensions, there may be some sources of errors such as in the estimation of the 

projection matrices or a possible dimensional discrepancy between the drawing and the 

physical structure. Thus, the exact dimensions are multiplied by a factor (2) to 

conservatively set the radius of the virtual sphere so as to fully enclose the TRI in the 

bounding box.  

In this study, VisualSfM is used to compute the projection matrices. VisualSfM is 

a non-commercial free software having a user-friendly graphic user interface (GUI) (Wu, 

2013). This software has been widely used for many applications due to its accuracy and 

speed. Other than the SfM process, the remainder of the process is implemented using 

MATLAB. Twelve fiducial markers are manually marked on the main chords (six dots on 

the front and six on the back in Fig. 3.5(a)). Each circular dot has a 1 cm diameter, which 

is chosen to be visible on the collected images. Each of their 3D locations in the TRI 

coordinate system are known in advance using the 3D drawing, and the corresponding dots 

are found across the images to define 3D locations in the SfM coordinate system. As 

mentioned, even this process can be readily automated if coded fiducial markers are used. 

Once fiducial markers are detected on images, a nonlinear triangulation method is used to 

estimate the 3D location in the SfM coordinate system (Hartley and Zisserman, 2004).  
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3.3.2 Images collection from the test structure  

For validation of the method, images of the structure are collected using a Nikon D90 

camera with 18–105 mm lens. No zoom or flash functions are used, and the location of the 

camera is not pre-determined for each photo. A UAV is not flown for this validation, 

although parameters related to image acquisition are designed to be close to those needed 

for practical use of this technique using UAVs. A total of 789 images are collected, all of 

which are used for localizing ROIs. The camera setup has a fixed focal length of 18 mm, a 

resolution of 4,288 x 2,848 pixels, and the aperture is f/10 and the shutter speed is fixed at 

1/30sec. The effect of motion blur is not considered in this experiment. Based on Eq. (3.1), 

a distance threshold, WD, is computed using the following parameters: FL = 18 mm 

(camera setup), SR = 4288 pixel, SS = 23.6 mm (width), TS = 63.5 x 2 (factor) mm and TP 

= 127 pixel. This assumes that the accuracy for visual inspection may be more than 

1px/1mm. Note that TS varies depending on the task to be performed. α is selected to have 

a uniform distribution with limits of 0 and π/3 rad. The minimum angle of β is 0.92 rad, 

which is computed using SS and FL. β is also selected to have a uniform distribution with 

limits of 0.92 and π/2 rad. WD is determined based on the average value obtained from 

1000 simulations of Eq. (3.1) by randomly selecting combinations of α and β with the 

above parameters. WD is approximately 2,200 mm which is the value used for image 

collection. Note that this process is conducted before collecting the images, and the WD 

provides a rough guideline for planning a flight path for a UAV.  

The images are sequentially taken from roughly 2~3 m away from the structure. It 

is important to note that these images are acquired from locations that are not pre-

determined. The images are captured by circling around the structure six times collecting 

images from a similar height but, during each lap, the camera angles are changed. Six angle 

variations are configured including three angles in a vertical direction (up-middle-down) 

and two angles in a horizontal direction (right and left oblique). Fig. 3.6 shows sample 

images of the structure collected for the validation. The images in each row are captured 

from same vertical angle, which corresponds to up, middle, or down from top to bottom 

row. For successful estimation of the projection matrices using SfM, image collection is 

designed in such way that large overlaps between images are obtained. Several tactics are 

employed to achieve this overlap. First, more than seven images are collected at each 
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segment of the structure without changing angles in each lap. Images are collected using 

small transitional movements without changing angles to obtain large overlaps between 

images. Next, front images are not collected from a perpendicular orientation. The test 

structure has a clean and shiny surface, which may not produce enough feature points to 

be shared between images. This causes failures in estimating projection matrices using SfM. 

In the case of our target structure, more feature points are generated from the geometric 

features of the structure or backgrounds. Thus, oblique images are collected by varying 

horizontal angles to include more of those areas in each image. 

 

Figure 3.6 Samples images used for the demonstration. 

3.3.3 Results of the ROI localization 

Fig. 3.7 illustrates many localized ROIs on the images. Only the TRIs close to the camera 

location of the image (having sufficient ROI size) are selected as valid ROIs, which are 

marked as a red bounding box. TP in constraint 1 in chapter 3.2.4 varies depending on the 

radius of the TRI (a type of the welded connection). The accuracy for visual inspection (a 

ratio of TP to TS) is assumed to be 1pixel/1 mm and thus, 127 and 202 pixels are used as 

TP corresponding to a type 1 and 2, respectively. When the camera is closer to the TRIs or 

when the virtual sphere of the TRI has a larger radius, the size of the bounding box is bigger. 

The largest box in the first image in Fig.3.7 has a type 2 weld connection. This type of weld 

has a wide radius, and a closer distance to the camera. TRIs located in the background, are 

thus farther away from the camera, are not selected as ROIs on images.  
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Figure 3.7 Variation of the bounding boxes (ROIs) on images. 

The ROIs of all 118 TRIs are localized in each of the collected images. Examples 

of the ROIs obtained are shown in Fig. 3.8. The array of images on the left are the ROIs, 

for which each TRI is marked as a red box in the right image. Since the original images are 

collected from various angles and positions, the ROIs include various viewpoints of the 

TRI but their scale is almost identical. Ideally, the center of a given weld connection should 

always be located at the center of the ROI, and their size on the image should be identical. 

However, as mentioned in chapter 3.3.1, sources of error, for instance due to realistic 

construction uncertainties, can produce minor discrepancies in the ROI’s scale (size of the 

TRI in the ROI) and center location. For example, there are slight erroneous mappings in 

the third TRI in Fig. 3.8. Only 30 ROIs for each TRI are listed in Fig. 3.8, but their actual 

numbers are 101, 62, 79, and 60, respectively. Using such a set of ROIs, a human inspector 

could readily inspect each of these welds.  

The number of ROIs obtained depends on how many pictures include the 

corresponding TRIs. However, to achieve good quality for the ROIs, users also consider 

possible occlusion of the ROI. In the case of the TRI in the second and fourth row in Fig. 

3.8, its view is impeded by the geometric features of the structure, and the ROIs are too 

occluded to be used for visual inspection. Thus, users should carefully design the camera 

angles and location variations to collect a sufficient number of images to yield good 

visibility of the TRI.  
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Figure 3.8 Examples of the ROIs: Tiled images on the left show first 30 ROIs of the 

identical TRI location, which are extracted from different images. A red box on the right 

image shows the corresponding TRI. 

To further examine the feasibility of RILVI, experiments are conducted under 

different lighting conditions. This experiment is intended to prove that the developed 

method produces consistent localization outcomes even under light variations. A total of 

836 images are thus collected with interior fluorescent lighting. All camera settings and the 

image collection strategy are identical to the previous experiment. Although these images 

have more noise than those captured in daylight, all collected images are successfully 

utilized in SfM for the estimation of the projection matrices. 

Fig. 3.9 shows the ROIs extracted from this new image set. Their TRIs are identical 

to the first two ones in Fig. 3.8. This result shows that the TRIs on the ROIs are still clearly 

visible under lighting changes. Since the camera angles and locations are different for each 

image, the appearance of the TRIs on the ROIs are somewhat different from those in the 

previous image set. For example, a couple of the occluded ROIs are shown for the first TRI 

in Fig. 3.9 to demonstrate this effect.  
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Figure 3.9 Localization of the ROIs from the images collected under lighting changes 

(The TRIs used here are the same as those shown in the first and second rows in Fig. 
3.8.).  

3.4 Conclusion 

This study presents and validates an automated region of interest localization technique to 

support vision-based visual inspection, named RILVI. UAVs and other automated image 

capture systems can be used to collect a large volume of images for visual inspection. 

However, direct implementation of existing vision-based visual inspection methods on the 

raw images will generate large numbers of unwanted false-positive errors, and dramatically 

reduce the efficiency of the inspection process. The key contribution of the technique 

developed here is to extract appropriately cropped and scaled regions of interest from each 

of the collected images before applying either human-based or machine-based visual 

inspection techniques. The regions of interest correspond to the target regions if interest on 

the structure itself, and should be selected according to the inspection needs of the structure. 

The feasibility of RILVI is demonstrated using a full-scale highway sign structure. 118 

welds, which are assigned as our target regions for visual inspection, are successfully 

localized using 789 original images. A virtual sphere is adopted here to enclose the target 

region of interest, although this choice can readily be modified as needed for other 

geometries. It is expected that RILVI will provide the means to apply existing automated 

vision-based visual inspection techniques on a large volume of UAV images for rapid and 

efficient visual inspection.  
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CHAPTER 4. SEMANTIC ANNOTATION OF EARTHQUAKE 

RECONNAISSANCE IMAGES 

4.1 Background 

Post-event reconnaissance teams have a critical mission: to collect scientific data to learn 

from disasters. Despite the large volumes of images that have been gathered from past 

earthquakes, only a small portion of these are accessible to the public and archived with 

certain basic information such as date, event, or location. Thus, the ability to access and 

facilitate reuse of these images based on the true semantic contents on images is limited. 

Currently, there is no established formal terminology and annotation method for describing 

visual contents in such images. This impedes the use of images for generating new 

knowledge, and large volumes of images remain largely unused for scientific research.  

The value of visual data (e.g. image, or video) enhanced through accurate and 

useful annotation will empower researchers across several disciplines to distil the 

importance lessons that will enable engineers and researchers to improve the resilience of 

our communities against natural events. Determining appropriately structured and 

formalized descriptive information for these images will enable their scientific use and 

retrieval. For instance, longitudinal studies or regional studies comparing structural 

performance would lead to decisions regarding design practices. A structured set of 

descriptive information is essential for making use of these data. Long-term preservation 

of the large volumes of images collected is only effective if it is discoverable by future 

researchers. An example related to impact of reconnaissance data, a longitudinal study 

directly comparing the performance of school buildings in Turkey was conducted. Images 

collected during the 1999 Düzce and 2003 Bingöl earthquakes were used, and both time 

variations and regional techniques were examined. The conclusion was that, regardless of 

construction quality, the use of structural walls was the single important structural 

characteristic impacting life safety in these schools. The presence of structural walls 

drastically improved performance, and prevented collapse (Gur et al., 2009). This single 

example of data reuse is one of many that provide strong motivation for formalized 

annotation of such data to guide policy and code decisions.  
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The US National Science Foundation requires researchers to follow a data  

management policy, and other nations and sponsors are also requiring open access to data 

(Warren et al., 2008; Design safe-ci, 2016; EERI, 2016). Furthermore, research domain 

repositories often have policies governing the requirements for curating and publishing 

such data (Bosi et al., 2015). However, in spite of the enormous investment involved in the 

collection of visual data, it has not historically been as carefully documented or organized 

due to the time and resources needed to perform the documentation.  

Recently, the earthquake engineering community has promoted data repositories, 

often integrated within science gateways, to gather various types of scientific data and 

lessons learned in the field. The Earthquake Engineering Research Institute (EERI) has 

archived a broad collection of earthquake reconnaissance data collected by 

multidisciplinary teams of researchers (e.g. earth scientists, engineers, social scientists) 

(eeri.org). Although general information can be retrieved about the event (e.g. data, event, 

seismic intensity and country) and other data resources are available (e.g. article, report or 

image), the actual image data collected in the field are categorized as “Other resources.” 

Structure researchers are not able to neither identify the types of data nor automatically 

search of their contents. Furthermore, images are not properly curated as well as available 

in use for only a few events. Another system, CEISMIC is designed to include a digital 

archive of multimedia contents related to the Canterbury earthquakes of 2010 and 2011 

(ceismic.org.nz). Archived data can be filtered by several types (e.g. images, newspapers, 

or videos) and metadata (e.g. keyword, time, or provider). However, image search results 

are limited because images are retrieved based on associated text descriptions included in 

related documents, and not using specific tagged keywords. The Earthquake Engineering 

Online Archive and NISEE e-library is a database of literature, photographs, data and 

software in earthquake structural and geotechnical engineering (nisee.berkeley.edu). 

Various types of data from historical earthquakes are well documented and accessed by 

searching matching keywords. However, this is not data-intensive repository and provides 

very few information including images related with recent earthquake events (e.g. Haiti, 

2010 or Nepal, 2014). Next, a complete well-curated image database is published through 

Disaster and Failure Data Repository in National Institute of Standards and Technology 

(NIST) (disasterhub.nist.gov). Images collected from Chile earthquake in 2010 and Joplin 
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Tornado in 2011. This database clearly defines 23 keywords for tagging photographs, to 

aid search for photographs in database. Lastly, “datacenterhub.org” is an ongoing project 

funded by Purdue University and the National Science Foundation (NSF-1443027), and 

provides comprehensive collections of earthquake reconnaissance data and images 

(datacenterhub.org). Data are curated in the form of a table to enable readily comparisons 

and searching. They are ongoing development of keyword-based image searching.  

As our image collections from reconnaissance missions continue to grow, a 

formalized and structured method is needed to store and retrieve earthquake reconnaissance 

images (hereafter, earthquake images) along with descriptive metadata of these images. 

The descriptions should be based on the visual contents as extracted from the images 

collected, and integrated with the necessary information about the location and source of 

the image. However, currently, there is no schema or methodology to be used for 

representing visual semantic contents and engineer’s explicit interpretation and knowledge 

in earthquake images. Unorganized and heterogeneous keywords or descriptions of 

semantic contents on images disrupt retrieving right contents and future reuse for scientific 

research. 

Herein, a high-level annotation schema is proposed for describing the visual semantic 

contents of earthquake images in a structured way. The method is developed to incorporate 

original descriptions of earthquake images by preserving the original meaning of the 

description. Annotated contents and images can thus be fully retrieved using a semantic 

query. A core idea is to annotate images using formalized terms and relations constructed 

by Earthquake Image Ontology (EIO). With support of the associated annotation tool, 

human annotators can easily select proper terms and their relations for descriptions and 

convert them in structured forms. Ultimately, this study aims to initiate a discussion of the 

visual semantic annotation in earthquake images. The proposed method is intended to 

provide a significant step forward in handling these unstructured images in such a way as 

to be manageable and tractable. 

4.2 Problem Statement  

The term “annotation” as used in this chapter is defined first. Image annotation is defined 

as the practice of capturing and collecting the contents associated with image data. This 
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often indicates automated annotation through either natural language process or computer 

vision algorithms (Krizhevsky et al., 2012; Pustejovsky and Stubbs, 2013; Johnson et al. 

2015), but, in this study, the scope of work is limited to a manual annotation, or “labeling,” 

by human annotators. The database constructed by robust manual annotation methods must 

take precedence in order to perform the annotation in more advance ways.  

In general, the contents are divided into two major categories: (1) properties of the 

image itself, such as size, resolution, location or date, and (2) actual visual content such as 

properties of the object, person or abstract concept (e.g. room, wall, failure?) depicted by 

the image (W3C, 2007). Simply, the former category answers “how, when and why was 

the image made or what information should be known to understand (the setting, or, to 

place) the content of the image?” and the latter category provides an answer to “what does 

the image depict or illustrate?”. The terminology for the description and documentation 

necessary to address the first category has been well established and standardized, for 

example, Exchangeable Image File Format (EXIF) or Dublin Core (W3C, 2007; Dublin 

Core, 2016). Most of current image repositories were built based on extension of such basic 

metadata. However, the second category, “what should be known to understand the visual 

content of the image”, called semantic annotations, is still a complex problem. Descriptions 

of images have large variations and level of details in domain terms and expressions for 

knowledge representations, and its dependence on the associated application and 

background knowledge of annotators. Storing those information as fully searchable forms 

is much more challenges. In general, a keyword based image tagging and retrieval by 

matching text keywords (or visual features using computer vision methods) is widely used 

in existing database and commercial service (e.g. Flickr, google). However, because users 

often generate the description and metadata using their own terminology without any 

structure, the ability to retrieve useful data is limited without consistently annotated 

contents and contextual information. Also, keywords based description suffer from lack of 

ability to relate adjectives to nouns (example in next paragraph). Lastly, tagging the 

keywords are not sufficient to describe earthquake images to be used for scientific and 

knowledge generation purposes. 
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Figure 4.1 Sample image of reinforced concrete shear wall damage in the 2010 Chile 

earthquake (Moehle et al., 2011; Telleen et al., 2012). 

To better understand the intent of this research, consider the sample earthquake 

image in Fig. 4.1. This image was collected by an earthquake reconnaissance team after 

the 2010 Chile earthquake. This image opened a critical line of inquiry that strongly impact 

on the practice of structural wall design because the damage mode, called “overall wall 

buckling”, had rarely been observed in past earthquakes (Moehle et al., 2011; Telleen et 

al., 2012). The following statement was provided as the original description of the image: 

“Reinforced concrete shear wall has longitudinal crushing, spalling at height of the wall, 

and buckling of vertical reinforcement at the boundary” (Moehle et al., 2011). This is a 

typical description, and includes information about the visual contents such as the structure 

component type, several damage types and directions, and relative location of the damage. 

The outcome for this research is to store information in the data so that retrieve all 

information by query. Keyword-based image tagging would not effectively handle so much 

information. For example, if reduced to keywords, “longitudinal” and “vertical” can refer 

to either the reinforcement or the damage, and the locations of “height” and “boundary” 

lost their relationship to targets in the image. In additions, it is difficult to represent spatial 

information using simple keyword tagging.  

4.3 Methodology 

Before providing details on how to achieve this goal for earthquake images, the technology 

needed to support the proposed annotation method is introduced. Resource Description 

Framework (RDF) is a formal language for describing structured information (Bönström 

et al., 2003; W3C, 2007). The RDF data model defines data as a 3–tuple, referred to as 
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triples (W3C, 2007). For example, suppose that the information to be stored is “John has a 

son, Brad.” This data is represented as a triple using “John–hasSon–Brad”. The RDF data 

model is mainly used as a plain format to store or exchange information, without providing 

any semantics. In other words, this data model explains how to represent the information 

as a triple but does not provide the mechanism to define names for the specific property or 

value. In the previous example, without knowing that “John” can have the property of 

“hasSon”, their relationship cannot be hypothesized. Thus, a schema to define resource 

types and names, and their structure (or relationships) is needed. Web Ontology Language 

(OWL) is an ontology language that can be used to represent the meaning of terms and 

their relationships for domain applications in a more expressive way. In this study, the 

OWL-DL language is employed for modeling our EIO (Staab and Studer, 2009). Here, DL 

stands for description logics, which is designed for reasoning systems. 

The main OWL elements are classes and properties. A class is a set of terms that 

are used for describing concepts in a particular domain. A property expresses a relationship 

between two classes or with a description of an object using values. Actual data interested 

in this study are stored in instances in classes. In the previous example, “Father” and “Son” 

are possible classes, and these classes have instances of “John” and “Brad”, respectively. 

Their relationship is defined through the property “hasSon”. In our EIO, a class includes 

the terms that are needed for describing the visual content of the images, and a property is 

the relationship between classes. Here, the core idea underlying the proposed annotation 

method is that sentence-like information, such as “John has a son, Brad”, can readily be 

converted into a triple, John–hasSon–Brad. To use this approach, the classes and properties 

to be used would be selected from the developed ontology.  

Based on a detailed review of current practices used to describe the earthquake 

images in the literature, the original descriptions used for earthquake images can be nearly 

automatically represented by appropriate set of multiple triples while maintaining much of 

the richness of expression in language. Each highly detailed description may be 

transformed and stored in the RDF model guided by the predefined EIO. Having done that, 

the features of the RDF model are exploited such as storing linked data and semantic query 

searching. For example, the long image description in chapter 4.2 might be stored as 
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multiple triples in the database. This would enable a researcher to retrieve the stored 

information using a simple semantic query, as illustrated in chapter 4.6.  

 

Figure 4.2 Overview of the proposed image annotation method. 

Fig. 4.2 shows the general architecture of the proposed annotation method. The 

overall process is that annotators exploit an image annotation tool to store the original 

descriptions of images. The tool would employ the pre-defined classes and their properties 

in our EIO, assisting annotators to apply valid class names and types, while converting the 

original descriptions to multiple triples. With these in place, the stored information can be 

fully retrieved using query languages. Here, Protégé is used for developing our ontology 

suitable for annotating earthquake images. Protégé is ontology design software and has a 

user–friendly interface and support for exporting ontology definitions in the established 

RDF/OWL database format to compose and execute queries using RDF query languages 

(protege.stanford.edu).  

All terminology used in the remainder of this paper are those used in Protégé. 

Vocabularies (objects or terminologies) are referred to as a Class and their relations (object 

property) and relation to value (data property) are described using a Property (Noy and 

McGuinness, 2001; Horridge et al., 2004). There is no mandatory naming convention for 

OWL-DL classes and properties, but in EIO all class names begin with a capital letter with 

no space between words, and property names start with ‘has’ or ‘is’ and have no spaces 

and use capitalization for the remaining words. This choice of convention helps clarify the 

intent of the property to annotators (Horridge et al., 2004). Hereafter, all class and property 

names are written using italics. 
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4.4 Earthquake Image Ontology 

The development of EIO is intended for annotating earthquake image using a broad, but 

still focused, range of standardized terminology and structures. EIO is highly tailored to 

provide rich and natural descriptions of visual semantic content in earthquake images. EIO 

has been designed based on image descriptions in published articles, reconnaissance 

reports, and manuals related with earthquake building reconnaissance (Baggio et al., 2007; 

FEMA, 2015b; ATC, 2016). It is meant to be quite flexible, permitting changes and 

expansion of classes and properties over time. All classes and properties are designed using 

English, and the use of all morphological variants of a word, such as plurals of nouns or 

inflected forms of verbs (e.g., collapse, collapsing, collapsed) are ignored. Thus they all 

point to one single class defined in EIO.  

EIO has two top classes: Visual and Metadata. This division is based on whether 

or not the information can be collected from visual semantic content. As mentioned in 

chapter 4.2, this study focuses on the visual semantic content included in Visual. Note that 

“semantic” means other non-semantic visual contents are considered here such as color, 

shape or pattern across the images unless they contain a particular semantic meaning.  

In Visual, there are three subclasses. Together these cover most of the classes 

appearing in existing image descriptions. The three subclasses are: Target, Feature and 

Damage. Figs. 4.3(a) to (c) provide a list of the subclasses in Protégé and these subclasses 

inherit the characteristics of the superclasses. Target refers to the subject of an image. In 

Target, there are two broad classes, Object and Place. Object is a thing that has a visually 

clear boundary and illustratable shapes, such as Column, Wall, or Chimney. Place as the 

name suggests, is a space having a particular purpose, such as Balcony, LivingRoom, or 

Basement. This is typically inferred from the existence of objects and their spatial 

configuration. Feature includes any characteristics of a Target such as material, shape, or 

direction. Feature always modifies Target and cannot modify other classes in Feature.  

Damage, a special class, is a frequently used class to describe the damage state of 

Target. However, classes in Damage can be used as either Target or Feature in the context 

of the original description. In other words, Damage is subclass of either Target or Feature 

according to the way of its usage. For example, “Vertical Cracking” indicates that Vertical 

in Feature–Direction describes a direction of Cracking in Target–Damage. On the other 
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hand, “Collapsing Wall”, Collapsing is used as a characteristic (Feature) of Wall in 

Target–Object. Classes having the same semantic meanings may be used in the earthquake 

image description, and are registered as an equivalent class such as Rebar ≡ Reinforcement, 

or Floor ≡ Story. In addition, a class that requires clarification may include subclasses. For 

example, Failure can be modeled as a superclass of a kinds of severe damage such as 

collapsing or leaning, explained in chapter 4.6. 

Object properties are defined based on the relationship between two classes, shown 

in Fig. 4.3(d). The relationship between classes is not unique and various object properties 

can be defined (but, actually, there are not many). For the above example, hasDirections 

is an appropriate object property linking Cracking and Vertical. Object properties also have 

hierarchical subproperties, for instance, some subproperties of isLocatedAt are 

isLocatedOn, isLocatedNext, and isLocatedUnder.  

 
  

 

(a) Target (b) Feature (c) Damage (d) Object property 

Figure 4.3 Target, Feature, Damage and object properties in Earthquake Image 

Ontology (EIO). 

4.5 Image Annotation Tool 

The image annotation tool is designed to assist annotators to write structured image 

descriptions. The tool is intended to support them by providing a normative selection of 

appropriate names of classes and properties. Also, based on EIO, the tool can perform 

several functions such as identifying synonyms (e.g., Rebar and reinforcement), 

autocompletion (e.g., a user types a few characters of a term and the tool suggests a proper 

class or property), or clarifying ambiguity in words used to specify the meaning (e.g., 

Failure in chapter 4.6). Once a proper description is written, the tool generates multiple 
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triples in a semi-automated manner (Schreiber et al., 2001; Hollink et al., 2003; Im and 

Park, 2014). Here, “semi-automated” indicates that annotators are able to select appropriate 

class names or properties from a list supplied by the tool. 

As a result of our comprehensive review of earthquake image descriptions used in 

the literature, a major annotation pattern was identified in the annotations of earthquake 

images. The pattern consists of an illustration of a main target object by its characteristics, 

conditions, or spatial location relative to other objects, for example, “collapsing masonry 

wall”, “circular column” or “spalling column” (for further examples see Fig. 4.4). Thus, 

the following template is proposed, which is best suited for rich annotation using such 

descriptions:  

Feature 1  Target 1  (Object property)  Feature 2  Target 2 

where each underlined slot is a single class field, and each slot in the parenthesis is a single 

object property. 

Feature 1 and Feature 2 would contain a class from Feature or Damage, and Target 

1 and Target 2 would contain a subclass from Target or Damage. These are denoted as F1, 

T1, F2, and T2, respectively, in the sequence. A description using this template is referred 

to as a statement, and considered to represent an English sentence. Roughly speaking, (F1 

and T1), (Object property), and (F2 and T2) represent the subject, verb, and object or 

adjective, respectively). All fields are not necessarily required in such a statement. 

However, in each statement, annotators have to enter T1, which is the subject of the 

statement. A class in T1 (or T2) is automatically stored as Image–has{*}–T1 (or T2). Here, 

Image is a class that stores the annotation information. “–“ represents a delimiter for tuples 

in a triple, and “{*}” is the top subclass name of the corresponding class in Target, Feature 

or Damage. When T1 is in Target, {*} can be either hasObject, hasDamage or hasPlace 

for the object property. Then, annotators can enter other fields in the template for 

constructing a given statement. F1 always describes the characteristics of T1, and the 

“has{*}” property between them is automatically assigned. Thus, a triple of T1–has{*}–

F1 is generated. For instance, the statement of “F1: Collapsing, T1: Wall” is converted as 

Image–hasObject–Wall and Wall–hasDamage–Collapsing. Damage is the superclass of 

Collapsing. If both F2 and T2 are entered, a triple is generated between F2 and T2 in a 

similar fashion as (T2–has{*}–F2) and (Object property) in the template is selected based 



58 

 

on the object properties between T1 and T2. The annotation tool suggests a list of possible 

object properties, and the annotator selects an appropriate property that can best describe 

the meaning of the original description. If the annotator only provides an entry for F2, the 

property is selected according to the relationship between T1 and F2. For example, the 

statement “F1: Concrete, T1: Wall, F2: Collapsing” is converted as Image–hasObject–Wall, 

Wall–hasMaterial–Concrete and Wall–hasDamage–Collapsing.  

The actual usage of this template for image annotation is straightforward. For 

example, annotation of the original long description in chapter 4.2 is demonstrated in Table 

4.1. The original description can be represented as 6 statements, and 15 triples are 

generated, allowing for search and ready retrieval in the future. Note that the integration of 

multiple triples results in a description that includes almost the same information and has 

the same meaning as the original description. 

Table 4.1 Annotation example using the description “Reinforced concrete shear wall has 

longitudinal crushing, spalling at height of the wall, and buckling of vertical 
reinforcement at the boundary” 

Statements Triples 

F1: ReinforcedConcrete, T1: ShearWall, 

F2: Longitudinal, T2: Crushing 

Image – hasObject – ShearWall 

Image – hasDamage – Crushing  

ShearWall – hasDamage – Crushing 

ShearWall – hasMaterial – ReinforcedConcrete 

Crushing – hasDirection – Longitudinal  

T1: ShearWall, F2: Longitudinal, T2: 

Spalling 

 

Image – hasDamage – Spalling 

ShearWall – hasDamage – Spalling  

Spalling – hasDirection – Longitudinal 

T1: Spalling, T2: ShearWall Spalling – isLocatedInTop – ShearWall 

T1: Crushing, T2: ShearWall Crushing – isLocatedInTop – ShearWall 

F1: Vertical, T1: Reinforcement, T2: 

Buckling 

 

Image – hasDamage – Buckling 

Image – hasObject – Reinforcement 

Reinforcement – hasDamage – Buckling 

Reinforcement – hasDirection – Vertical 

T1: Reinforcement, T2: ShearWall Reinforcement – isLocatedInSide – ShearWall 

 * Note that overlap triples that are generated in the previous statement are removed.  

More examples are shown in Fig. 4.4. All images or original descriptions in this 

figure have been extracted from published sources including data repositories, reports or 
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articles, which document image data in previous earthquake events. On the whole, 

regardless of an inevitable unnaturalness coming from the use of template annotation and 

triple conversion, the original meanings of descriptions can be preserved in the triples.  

  

 

(a) (b) (c) 

 

  
(d) (e) (f) 

Figure 4.4 Example annotations of real-world earthquake images:  

(a) Description: Vertical cracks along the Orthogonal Wall (Italy, 1998) (Baggio et al., 2007) 

Statements: (F1: Orthogonal, T1: Wall, F2: Vertical, T2: Cracking) 
Triples: (Wall – hasDamage – Cracking), (Wall – hasShape – Orthogonal) and (Cracking 
– hasDirection – Vertical) 

(b) Description: Failure of an unreinforced masonry wall in a building (USA, 1989) (FEMA, 
2015a) 
Statements: (F1: UnreinforcedMasonry, T1: Wall, F2: Failure) and (T1: Wall, T2: Building) 
Triples: (Wall – hasMaterial – UnreinforcedMasonry), (Wall – hasDamage – Failure) and 

(Wall – isLocatedAt – Building)  
(c) Description: Collapse of a tilt–up bearing wall (1994, Northridge earthquake) (FEMA, 

2015a) 
Statements: (F1: Collapsing, T1: TiltWall) 
Triples: TiltWall – hasDamage – Collapsing 

(d) Description: Failed captive column in the basement (1999, Turkey earthquake) (Gur et al., 
2009) 
Statements: (F1: Failure, T1: CaptiveColumn, T2: Basement) 

Triples: (CaptiveColumn – hasDamage – Failure) and (CaptiveColumn – isLocatesdAt – 
Basement) 

(e) Description: Soft story failure (2015, Nepal earthquake) (Shah et al., 2015) 
Statements: (F1: SoftStory, T1: Building) 
Triples: Building – hasDamage – SoftStory 

(f) Description: Shear failure reinforced concrete column next to collapsed masonry wall (2015, 
Nepal earthquake) (Shah et al., 2015) 
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Statements: (F1: ShearFailure, T1: Column, F2: Collapsing, T2: Wall) and (F1: 
ReinforcedConcrete, T1: Column, F2: Masonry, T2: 
Wall)https://datacenterhub.org/resources/14160 
Triples: (Column – isLocatedNext – Wall), (Column – hasDamage – ShearFailure), (Wall – 

hasDamage – Collapsing), (Column – hasMaterial – ReinforcedConcrete) and (Wall – 
hasMaterial – Masonry) 
 

* Parentheses in statements and triples are used to separate entries for clarity. 
** Triples of Image-has{*}-T1 (or T2) in Triples are omitted.  

Although our triple representation uses the names of classes in EIO, the actual 

annotated data are stored as individuals (instance in OWL) in the corresponding classes. 

For example, suppose that the description of a specific image is “collapsing wall”. An 

individual, Image1, in Image is created and all annotation data related to the corresponding 

image are stored (hereafter, an underline for the name of each individual is used). 

Individuals Collapsing1 and Wall1 are also generated. Then, the actual triple statements to 

be stored become Images1–hasObject–Wall1 and Wall1–hasDamage–Collapsing1. This 

statement is interpreted as “wall” in the description of a specific wall in Wall in the 

corresponding image, and this wall is named as Wall1. 

4.6 Evaluation of the Proposed Approach for Image Retrieval 

The RDF data model and query searching languages are well established and already in 

use in many application domains (W3C, 2008). Thus, the readers are recommended to 

review how to use RDF query languages for data retrieval and to provide the capability of 

query searching for data already written in triples. Rather, our focus in this subchapter is 

to demonstrate how closely query searching results can yield ground-truth original 

descriptions, and through that process the effectiveness of the proposed annotation method 

is validated. Protégé provides a powerful query searching utility called DL–query. The 

query language (class expression) supported by the plugin can compose and execute 

queries with the Manchester OWL syntax, a user–friendly syntax for OWL-DL used in 

Protégé. However, as long as identical triple information produced from original image 

description is stored, query search results are almost identical regardless of the query 

languages or platforms.  

For demonstration purposes, the images are annotated shown in Fig. 4.4 based on 

their descriptions. The annotation data for image Figs. 4.4(a) to (f) store the individuals 

https://datacenterhub.org/resources/14160
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Image1~6, respectively. The annotated classes in each image produce individuals having 

the same naming convention, for example having number as suffix. The annotation 

example of Fig. 4.4(a) is presented in Fig. 4.5. the data are visualized using OntoGraf in 

Protégé. All individuals, their classes, and object properties between classes (“Arc Types” 

son the right of Fig. 4.5) that are used for annotation of Fig. 4.4(a) are visualized.  

 

Figure 4.5 Visualizing the annotation data of Fig. 4.4(a) using the OntoGraf. 

Some sample queries that can be used for retrieving annotated data are examined 

below. Note that when individuals in DL-query like Fig. 4.6 are checked, a query is used 

for searching an individual in a corresponding class, which stores actual annotated data. 

Query 1. Which image has a collapsed wall? (Fig. 4.6(a)): This is a relatively 

simple query. All classes Image having an object Wall with damage Collapsing are found. 

However, strictly speaking, individuals in Image that include a specific wall having 

collapsing damage are found here. The query expression is “Image and hasObject some 

(Wall and hasDamage some Collapsing)”. The query result is Image3 and Image6. 

Interestingly, Image2 is not captured with this query because of its damage types as Failure. 

Failure is ambiguous and has no specific definition regarding image annotation. However, 

typically, as saying “failure of the components”, it indicates that the components have 

severe damage and are not serving their function. Thus, in EIO, Failure is classified as a 

superclass of Buckling, Collapsing, Crushing, Drifting, Dislocating, Learning, StoftStory, 

ShearFailure, and SevereSpalling. Here, SevereSpalling is defined as “Spalling and 

(hasDamageLevel some (Large or Severe))”, which means “large or severe spalling”. Thus, 

Figs. 4.4(b) and (d) were acceptably described as containing “failure”.  

Unfortunately, there is no way to retrieve Image2 using above query expression 

because Failure subsumes Collapsing. However, based on EIO, the tool suggests that 
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annotators must specify the type of Failure in the annotation stage or retrieve Image2 when 

images using a different query Failure (Query 2) are searched.  

Query 2. Which image has a failure? (Fig. 4.6(b)): The query expression is 

“Image and hasTarget some (hasDamage some Failure)”. The query result is Image2 ~6 

and all images having a Failure target are detected. Note that Image2 is detected in this 

query despite of having no syntactic match (Failure ≠ Collapsing). Here, hasTarget is a 

superclass of hasObject and hasPlace, which can find damaged objects and places. Thus, 

the above query is identical to “Image and (hasObject some (hasDamage some Failure) or 

hasPlace some (hasDamage some Failure))”.  

Query 3. Which damaged object is located in the basement? (Fig. 4.6(c)): A 

specific object with a certain condition is retrieved. The query expression is “Object and 

(hasDamage some Damage and isLocatedAt some Basement)”. This query will detect all 

images with damaged objects located in the basement. The query result is CaptiveColumn4, 

which is a captive column in Fig. 4.4(d). When containing these objects are searched, a 

query of “Image and hasObject some (above original query expression)” can be written.  

   
(a) Query 1 (b) Query 2 (c) Query 3 

Figure 4.6 Examples of query searching results using annotated data in Fig. 4.4. 

4.7 Conclusion 

As saying goes, one picture is worth a thousand words. This means, in other words, that a 

single picture contains a large amount of information and can be documented with several 

descriptions. This study enables documentation and retrieval of various visual semantic 

contents in earthquake images using the proposed ontology and annotation tool. EIO is 

created based on vocabularies and their relationships frequently used for descriptions of 
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earthquake images. Using EIO and image annotation tool, it is demonstrated that the 

meaning of original descriptions can be transformed into a searchable form using triples to 

facilitate future retrieval based on the visual contents. Our annotation method can store 

these descriptions without any degradation or loss in the original meaning. Stored 

annotation data using the proposed approach can be fully retrieved with various semantic 

queries. 

This annotation method has been designed for earthquake images and is focused, 

to date, on images of buildings and intended for researchers focused on structural design 

and performance. It might be possible to extend it to be applicable to describe the contents 

of images used for other purposes, which is worth consideration in the future. As it stands, 

this method represents a major step forward toward the development of an ontology and 

associated annotation method to support relevant scientific research with these images.  
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CHAPTER 5. VISUAL DATA CLASSIFICATION IN POST-

EVENT BUILDING RECONNAISSANCE 

5.1 Introduction 

After every disaster, a great many images are collected by teams of trained professional 

engineers, academic researchers and graduate students. The primary functions of a post-

disaster reconnaissance team are to collect readily available, perishable data to enable 

scientific research intended to: (1) learn as much as possible about the nature of the event 

and extent of the consequences; (2) identify potential gaps in existing research or in the 

practical application of scientific, economic, engineering or policy knowledge; and (3) 

make recommendations regarding the need for further investigations, and/or changes to 

codes, standards and design guidelines. Damaged structures and their components provide 

critical information regarding performance during the event, and lessons learned from 

structures that do not experience damage are just as important. 

In a typical mission, a group of data collectors is dispatched to a region where an 

event has taken place. In a well-organized team, information about the local construction, 

severity of the event, as well as maps of the region are often made available in advance so 

that planning can take place. The larger group is divided into small teams with at least one 

more experienced structural engineering evaluator on each team. Each team visits 4-5 

buildings a day, collecting images at each site and taking measurements from each building. 

The teams may follow the procedures outlined in established guidelines (e.g. ATC-20 

(earthquakes) and ATC-45 (windstorms and floods)) for this process, which is intended for 

rapid structural evaluation after events (although these teams are not directly rating these 

buildings) (www.atcouncil.org). Each evening teams return to the base to discuss the 

findings and to review plans regarding where to spend time and effort collecting data on 

the next day. 

Currently, the primary approach available to researchers for the analysis of such 

data is tedious and time-consuming manual sorting and analysis of these photographs or 

videos. Only a small portion of these data, which are collected at great cost, are being used 

for scientific purposes or decisions in the field. There is a compelling need to offer 
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automated tools to aid the structural engineering researcher or the human decision-maker. 

These tools should provide the analytic power to classify suitable large-scale collections of 

visual data from disasters in a rapid and efficient manner. 

In this study, our goal is to develop and demonstrate a method for the automatic 

classification of post-disaster images collected during reconnaissance missions. An 

enabling factor in the proposed method is that a convolutional neural network algorithm 

(CNNs) implemented for scene (image) classification and object detection is exploited to 

identify and localize target components of interest on the images. The parameters in the 

neural network are trained using a large quantity of images so that the resulting trained 

classifier can achieve robust analysis of the images collected in a disaster, which are 

typically unordered and complex. This strategy is demonstrated by classifying collapse and 

detecting and localizing spalling damage using real-world image data. 

The key contribution of this research is that a feasible solution is provided for 

automatically analyzing large-scale collections of real-world images from disasters. 

Previous research has validated the use of certain techniques (e.g. object detection, damage 

detection, quantification) using a small quantity of images that were collected with the 

intention of using them for a particular purpose or application. However, in real 

circumstances after a disaster, there is no assurance that those techniques will be able to 

handle large-scale, complex, and unstructured images in such a way as to be tractable. 

Rather, the proposed method enables accurate and rapid analysis of visual contents in a 

large volume of real-world images. Herein, the proposed method is demonstrated using an 

unprecedented number of real images collected from several previous events. Furthermore, 

the methods developed and validated herein complement past research, and can be coupled 

with existing methods to incorporate new or existing vision-based damage detection 

methods for broad application to various situations in a range of disasters. For example, for 

crack detection, the proposed technique provides images or region of interest on images of 

target components, which are vulnerable to cracking (e.g. columns or walls after the 

earthquake). 
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5.2 Literature Review 

In the last few decades, researchers have realized amazing improvements in vision-based 

structural evaluation for civil engineering applications. These applications span a broad 

range of studies such as roads, bridges, and buildings. Existing techniques are commonly 

grouped according to one of the following categories: a given type of structure (e.g. bridge, 

road, building), damage (e.g. crack, spalling, corrosion), or material (e.g. concrete, steel) 

(Abdel-Qader et al., 2003; Jahanshahi et al., 2009; Yamaguchi et al., 2010). However, there 

are still significant challenges in their implementation, and such techniques often require 

significant modifications to apply them successfully across many situations even when 

their application is intended for the same target structure or damage type. Strategies for 

structural evaluation are often completely different depending on how images are collected 

and what prior information is available for target areas or damage. The existing techniques 

are classified according to three different categories. 

First, images acquired from a known structure with a stationary background are 

collected using fixed or highly controlled camera(s). The basic premise for this setup is 

that damage results in a noticeable visual change in the images. Because the scale of the 

target areas and their visual contents are quite uniform either spatially and temporally, 

change detection based on established image processing techniques is often sufficient to 

detect damage. Applications in this category have considered vision-based monitoring of 

critical areas (Jahanshahi et al., 2011), railroad damage identification (Hashmi and Keskar, 

2014), or crack scanning at tunnel (Zhang et al., 2014). It is possible that damage can be 

quantitatively evaluated based on prior information including the locations of the cameras, 

their calibration parameters, and the dimensions of the target structures. Existing image 

processing techniques that have been developed and used for more traditional machine 

vision applications (e.g. quality inspection, counting) can be directly applicable for 

applications in this category. 

Second, images acquired from a known structure under varying backgrounds are 

collected. Typical applications in this category consider periodic vision-based visual 

inspection using images collected by human inspectors or robotic platforms. Specific 

applications include pavement cracks (Zou et al., 2012) or pothole inspection (Koch and 

Brilakis, 2011), pipeline inspection (Sinha and Fieguth, 2006), crack quantification 
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(Jahanshahi and Masri, 2013), or corrosion detection (Jahanshahi and Masri, 2013; Bonnin-

Pascual and Ortiz, 2014). Images are collected on a regular basis from the same target 

inspection locations, but significant background variations are present in these images due 

to environmental noise (e.g. light variation, shadow), color changes (e.g. material 

degradation, decolonization) or the presence of irrelevant objects (e.g. debris, bugs, and 

traffic lines) (Chen et al., 2012). Thus, damage is not the sole source of visual changes in 

the images, and false positives are frequently triggered unless strong features of damage 

can be modeled and extracted, or unless the effects of background variations can be reduced. 

Regardless of such difficulties, once the inspection techniques and their parameters are 

calibrated in the early stage, the resulting procedures may be repetitively applied to conduct 

later inspections with just minor updates. Qualitative and quantitative damage evaluations 

are thus facilitated based on prior knowledge of the dimensions and location of the target 

inspection areas (Yeum and Dyke, 2015). 

Lastly, images containing unknown buildings/structures are collected. This 

situation is the most challenging in many respects, which is addressed herein for post-

disaster evaluation. A major difference from the previous two categories is that image 

collection processes cannot be optimized in advance for target structure(s) or inspection 

purposes due to insufficient prior knowledge about the situation and structure. In the 

literature, a handful of researchers has made contributions to address this field of study due 

to the complexity involved. Brilakis and co-workers have contributed to the establishment 

of image-based post-disaster evaluation methods by developing several techniques such as 

concrete damage evaluation (Zhu et al., 2011), spalling detection (German et al., 2012) or 

3D reconstruction using videogrammetry (Brilakis et al., 2011). Recently, Torok et al. 

developed an image-based 3D reconstruction technique for quantification of cracks and 

material loss using a structural-from-motion technique (Torok et al., 2014).  

However, there are still several realistic challenges in the evaluation of damage 

using post-disaster images. A major challenge is faced in processing complex, unordered, 

and unstructured images because many individuals collect large quantities of valuable 

images from different regions within a short time. As an example of our experience 

introduced in chapter 5.4, 90,000 real-world images that were collected during past 

reconnaissance missions for research purposes are gathered. In addition to containing 
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images intended for reconnaissance purposes, such collections also include a significant 

number of irrelevant (e.g. people, random objects, vehicles) or corrupted (e.g. blurred, 

noisy, dirty on the camera lens) images. Within these image collections, reconnaissance 

teams also frequently incorporate metadata in the form of images such as drawings, GPS 

devices, or measurements (e.g. image of a structural column with a measuring tape). Such 

diversity in images should be expected during such a mission, as vast amounts of images 

are collected by dozens of individuals over a short span of time. Taking steps to filter out 

unnecessary or irrelevant images before classification and detailed analysis can yield 

drastic improvements in computational speed and outcomes in the end. 

Despite such difficulty, two opportunities are enabling automated analysis of such 

images. First, computer vision methods and machine learning algorithms have been 

established within computer science and engineering, and related disciplines. Recent CNNs 

have led to major breakthroughs in image recognition and object detection and enable the 

development of high-level abstractions using massive labeled data and parameters (LeCun 

et al., 1990, 2015; Krizhevsky et al., 2012). They facilitate the development of reliable 

solutions for object recognition in damage detection applications. Second, a large-scale 

image database is built gathered from researchers and practitioners after past natural 

disasters. In computer vision, groun-truth image annotation databases have established the 

foundation for developing robust object recognition techniques through large-scale training 

and validation. However, the overwhelming majority of these databases target general, 

everyday objects and images, rather than real-world visual data having the complexity 

encountered with building reconnaissance images. Based on these successful examples, it 

is anticipated that the database will become a domain testbed for a variety of techniques 

including labeled image data for collapse classification and spalling detection, proposed 

and demonstrated in this study. 

5.3 Technical Approach 

In the last few years, CNNs have shed light on several computer vision applications and 

enabled the learning of high-level and deep features for image recognition using large-scale 

databases (LeCun et al., 1990, 2015; Krizhevsky et al., 2012; Karpathy et al., 2014; 

sRussakovsky et al., 2015). CNNs typically have one or more convolutional layers tied 
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with weights and pooling layers to extract scale, translation, and rotation tolerant features, 

and fully-connected layers associated with these features to classify images or object 

categories. Conceptually, CNNs work by finding features that best describe the given 

images with numerous convolutional filters. Recent successes of CNNs resulted from 

training a large number of images, a large number of parameters, “dropout” regularization, 

and GPU implementation. Several CNN architectures have been introduced in the literature, 

but their accuracy varies depending on how one configures the network architecture. 

Optimal network architectures and the configuration of input images and categories are 

still topics of active research in different domains of applications. However, it is evident 

that CNNs provide exceptional performance in object recognition on natural images 

(Russakovsky et al., 2015). 

Among the several possible implementations of CNNs, facilitating scene (image) 

classification and object detection for our applications are focused (Xiao et al., 2014; 

Girshick et al., 2016). Scenes are defined by a subject (e.g. playing soccer, dancing) or a 

place (e.g. room, street), which is what the entire image represents in general. Scenes from 

images may be understood by the presence of single or multiple objects and their spatial 

arrangement. Thus, scenes are considered to be a class of an image (Xiao et al., 2014; Zhou 

et al., 2014). For instance, a scene of a building façade can be understood by one or more 

objects and their spatial arrangement including an entrance at the bottom, and an array of 

windows or floor borders. Scene classification can be performed using coarse resolution 

images because scenes are typically recognized by low-dimensional features (e.g. general 

shape, colors, or compositions) and need not be interpreted using the detailed appearance 

of objects. For example, people often experience that thumbnail images are sufficient to 

understand the “scene” of an image even though the details regarding the contents are not 

available. Overall, scene classification is applicable for fast browsing through large visual 

data to extract relevant scenes of interest where target objects are present as well as to 

perform image-level classification, not individual contents on images. Fig. 5.1 (a) shows 

possible scene categories to be useful in our applications, including (1) street, alley, and 

freeway for roads; (2) building façade, first floor, basement and roof for buildings and (3) 

building collapse, building foundation, or low-rise building.  
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Collapse Building façade Column Spalling 

(a) (b) 

Figure 5.1 Promising applications of scene classification in (a) and object detection in 

(b) using disaster images: The bounding boxes in (b) are target objects of interest on 
images.  

On the other hand, object detection provides object identity (class) and object 

location within each image. Unlike scene classification, for object detection trained 

classifiers from CNNs are applied to small sub-regions of the images rather than over the 

entire area of the images. Thus, object detection requires an additional step that is used for 

extracting candidate object areas. In each image, many candidate windows having several 

different sizes and locations are proposed for accurate detection and localization. In Fig. 

5.1(b), possible applications aligned with the procedures for post-earthquake safety 

evaluation of buildings (ATC-20) include the detection of damage (spalling or cracking in 

the pattern), structural components (wall, columns, or beams), or falling hazard 

components (e.g. chimney or parapet). However, small features such as hairline cracks will 

only be visible in high resolution in the raw images. In this case, for example, a crack 

detection algorithm must be applied to the relevant target areas in high resolution after 

extracting base objects. Images in Fig. 5.1 are publically available at datacenterhub.org. 

An overview of scene classification and object detection procedures using CNNs is 

provided in Fig. 5.2. Two-class (binary) classification is implemented to train a complex 

discriminative boundary between a single class of interest (positive) and the rest (negative). 

A major difference between scene classification and object detection in the training process 

is the generation of input images for the CNNs. For scene classification, the original images 

are resized to be square, and random square regions on the resized image are used as inputs 
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for the CNNs. On the other hand, for object detection, small sub-regions, called object 

proposals, become input images (Girshick et al., 2016). The object proposals (red boxes on 

the image at “object proposals” in Fig. 5.2) having a large overlap with the class of interest 

(spalling in Fig. 5.2) are assigned as positive, and the remainder of the windows are 

assigned as negative. Both the original images in scene classification and the object 

proposals in object detection are directly resized and cropped to be transformed into the 

input size of the CNNs, typically a square with low resolution (e.g. 200~300 pixel on each 

side depending on algorithms) (Girshick et al., 2016). Then, the resulting images are 

augmented to avoid overfitting on translation, color or light variations, by producing more 

training images without adding new original images. Once the inputs of the CNN are 

prepared using the original images, a large number of parameters at convolutional, pooling 

and fully connected layers are automatically tuned so as to extract robust features by 

minimizing the error of estimating true labels of training images. Stochastic gradient 

descent with a batch size of images is trained to optimize the parameters in the network. 

At each epoch, a batch at each iteration is assigned using randomly ordered images after 

augmentation. Depending on the learning rates, a number of images, network configuration, 

or hardware specification, the training process typically takes from a couple of hours to 

some weeks.  

 

Figure 5.2 Overview of scene classification and object detection using CNNs for binary 

classification. 
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5.4 Post-Event Reconnaissance Image Database 

Our post-event reconnaissance image database is first introduced. An unprecedented 

collection of around 90,000 color images is gathered from researchers and practitioners 

after past natural disasters (hurricane, tornado, and seismic events) (e.g., from 

datacenterhub.org at Purdue University, disaster responders, or the Earthquake 

Engineering Research Institute image collection). Sample images in our database are 

arranged in Fig. 5.3. These samples are publically available, e.g. at datacenterhub.org. 

Nearly all of the images preserve the original quality (resolution) as well as the basic 

metadata (e.g. date, time, and event), and a small portion of images contain GPS 

information or a picture of a GPS navigator. However, no annotations were available to 

describe the visual contents of the images. At this time, the distribution of the types of 

disasters is earthquake (90%), hurricane (6%), tornado (3%), and others (1%). These 

images are collected from several different events such as earthquakes (e.g. Haiti in 2010, 

L’Aquila in 2009, Nepal in 2015, Taiwan in 2016), hurricanes (e.g. Florida in 2004, Texas 

in 2008), tornadoes (Florida in 2007, Greensburg in 2007) (datacenterhub.org). Images are 

still being collected from such natural disasters to integrate into the database. 

 

Figure 5.3 Post-event reconnaissance image database. 

In this study, two specific applications are targeted to demonstrate the technique, 

to classify images of collapsed buildings and building components for scene classification, 

and to detect spalling in the images for object detection. The reasons for selecting these 

specific situations are: (1) collapse and spalling are important issues of damage of interest 

when collecting images for earthquake reconnaissance investigations; (2) a significant 
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number of images are included in the database for these cases and are thus available for 

training and validation; and, (3) there is no existing annotation image database for these 

damage types. To perform this case study, an extensive annotation image database is 

constructed for validation of the method. 

To classify images in this way, the terminology should have a clear definition. A 

clear definition is necessary to enable human annotators to establish a ground truth data set 

for training. Our definition of “collapse” for purposes of this study includes images that 

show buildings or building components that (1) have lost their original shapes; (2) produce 

a significant amount of debris; or (3) are not serviceable or have restricted access. “spalling” 

or “flaking” is defined as damage in the image that includes (1) exposed masonry areas in 

a wall due to cracking followed by flaking; (2) exposed rebar in a column as the concrete 

cover is lost; or (3) small section loss due to substantial cracking. However, there is 

considerable variety in the visual appearances for each, and it can be quite a challenge to 

define the terminology in words clearly. Thus, annotators are provided with a set of sample 

ground truth images in advance. Some sample images are presented in Fig. 5.4 

(datacenterhub.org).  

All of the images used for this demonstration are manually labeled from our image 

database using in-house annotation software. During annotation of collapse scenes and 

spalling damage, a single image is shown centered in the screen and annotators are asked 

to answer a yes or no question, for instance, “Does the image contain a collapse scene?” or 

“Is spalling damage present in the image?” In our experience, such binary classification is 

most appropriate in that it results in better performance than multiple choice questions. 

When labeling such a large volume of images, multiple choices are more likely to lead to 

erroneous selections due to handling many buttons/options, and the resulting decreases in 

the annotator’s concentration as annotation time goes by. Once the images that have 

spalling are extracted, the areas in each image with spalling are manually identified with a 

tight bounding box, as demonstrated in Fig. 5.4(b).  
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(a) (b)  

Figure 5.4 Samples of ground truth (labeled) images: (a) collapse and (b) spalling. 

5.5 Collapse Classification 

5.5.1 Configuration 

In practical implementations, a trained binary classifier will be applied to distinguish 

images containing collapsed buildings and building components (hereafter, collapse 

images) from a whole set of the images. This collection of images contains, in addition to 

the images of buildings and their components, other images with irrelevant or extraneous 

visual contents. For instance, images of cars, people, drawings, rubble, and so forth, may 

represent a small portion of the image collection which must also be dealt with. Thus, 

appropriate unbiased negative samples should be included in the training images, and these 

should have similar visual content or appearance as the ones used for actual implementation 

(testing). In other words, for training classifiers for the detection of collapse (positive) 

images, undamaged buildings, and building components should not solely be included in 

the set of negative images.  

For demonstration purposes, a dataset collected during earthquake reconnaissance 

missions is manually annotated. Our dataset is composed of 1,850 collapse images (as 

defined in chapter 5.4) as positive and 3,420 non-collapse images as negative, for a total of 

5,270 images. Non-collapse images mainly consist of undamaged buildings, damaged 

buildings, and irrelevant pictures, annotated from our image database, which represents a 

typical data set collected during an earthquake reconnaissance mission. The sample images 
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for this category are shown in Fig 5.5. All labeled images are divided into 2,636 (50%), 

1,317 (25%), and 1,317 (25%) images for training, validating and testing. 

    

(a) (b) (c) (d) 

Figure 5.5 Sample images used for collapse classification: (a) collapse buildings, (b) 

damage on buildings, (c) irrelevant images, and (d) undamaged buildings: (a) is assigned 
in a positive class and the others are in a negative class. 

In this study, a popular ImageNet CNN model called Alexnet (TorontoNet in Caffe) 

is implemented, which is framed in MatConvNet library (Vedaldi and Lenc, 2014). Alexnet 

exhibited superior implementation of CNNs in computer vision applications in the 

ImageNet image classification competition in 2012 and has been widely used for a 

benchmark test of a CNN model (Russakovsky et al., 2015). The network architecture is 

presented in detail in the following reference (Krizhevsky et al., 2012). Although some 

improved architectures have also been introduced and demonstrated after 2012, in this 

study, Alexnet is selected as an established method to implement this proof of concept of 

a simple and general CNN model.  

As a pre-processing step, the raw images are first resized to 256 x 256 (pixels) to 

produce a set of regularized input images. In the original implementation, the images were 

rescaled such that the shorter side of the image becomes 256 and then cropped out the 

central 256 x 256 patch from the resulting image (Krizhevsky et al., 2012). This general-

purpose method was based on the fact that a majority of images collected by humans are 

captured in such way that its subject is located at the center of the image. However, because 

of dealing with scientific images, a different resizing and cropping strategy is applied. The 

images are directly stretched or shrunk to 256 x 256 without preserving their aspect ratios. 

This approach is valid because the way engineers capture and understand collapse through 

images is not particularly dependent on the actual aspect ratio of the visual contents of the 
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images. Cropping out a horizontal or vertical edge of the original image would cause a loss 

of important visual features needed to recognize collapse. For example, debris can be a 

crucial visual clue (and feature) and typically appears at the bottom of images. Our resizing 

method can avoid accidentally eliminating these features on the input images. Once the set  

of images is resized, the mean RGB value is subtracted on the training set from each pixel 

to generate features that are unbiased on colors (Girshick et al., 2016).  

For data augmentation, 227 x 227 patches are randomly cropped from each of the 

256 x 256 images in each epoch. For further augment the training set, these patches are 

randomly flipped horizontally (mirroring) for inclusion in the data set. The last 1000-way 

softmax layers in the original implementation of the ImageNet competition is modified to 

2-way ones for binary classification (Russakovsky et al., 2015). The layers are initialized 

as a Gaussian distribution with a zero mean and variance equal to 0.1. The hyper-

parameters are the same as those used in Alexnet (Krizhevsky et al., 2012). Our models are 

trained using stochastic gradient descent with a batch size of 256 images, the momentum 

of 0.9, and weight decay of 0.0005. The network is trained for 300 epochs, and the learning 

rate is logarithmically decreased from 0.01 to 0.0001 during training. A workstation having 

a Xeon E5-2609 CPU and a GPU, NVidia Titan X with 12 GB video memory is used for 

training and testing the algorithm. The MatConvNet library installed on Matlab 2016a is 

used for this study (Vedaldi and Lenc, 2014). Training of 2,636 images including 1,317 

images for validation in each epoch takes around one minute.  

5.5.2 Collapse classification results 

In this study, collapse classification successfully attains a relatively high accuracy. Rates 

of 90.26% (417/462 images) true-positive (true classification of collapse images) and 92.16% 

(788/855 images) true-negative are obtained, respectively. The precision is 0.862, defined 

as the number of true positives over the number of positives. Random samples of testing 

results with their predicted labels are shown in Fig. 5.6. Figs. 5.6(a) and (b) are obtained 

from ground-truth collapse and non-collapse images, respectively. Although these rates 

will vary slightly depending on CNN architectures and their parameters, the overall 

performance of this approach is quite successful. 
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(a) 

 
(b) 

Figure 5.6 Random selection of images with the predicted classes: (a) ground-truth 

collapse images and (b) ground-truth non-collapse images. All images listed here are 

transformed into a square for the arrangement.  

5.6 Spalling Detection 

5.6.1 Configuration 

Unlike collapse classification, spalling detection requires an additional step for localizing 

one or many regions with spalling within an image. One popular approach is that the trained 

classifier is applied to each of numerous small sub-regions across each image and makes a 

decision on whether it contains or represents a target object of interest. Historically, sliding 

window detectors are typically implemented, which consist of scanning the entire image 

area with fixed windows (Viola and Jones, 2001; Zitnick and Dollar, 2014). However, its 

implementation requires the assumption that all objects to share a common aspect ratio, 

such as a pedestrian or face. Thus, this approach is not feasible for spalling detection due 

to the tremendous uncertainty in the size and shape (aspect ratio) of the spalling to be 

detected. Instead, the concept of object proposals is adopted through the extraction of 
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candidate segmentations (a portion of the image) derived from colors, saliency or edges, 

implemented using regional based convolutional neural networks (R-CNN) (Girshick et al., 

2016). This approach assumes that a target object is included in at least one of these 

segmented regions, facilitating localization of regions of interest. For spalling detection, 

the use of this method is highly acceptable because spalling is visually a blob-like region 

having prominent colors and textures as compared to the background, and thus one of 

detected object proposal windows includes a true object with a high accuracy. The selective 

search algorithm, which is well known for robust object proposal detection, is used for this 

study (Uijlings et al., 2013). 

A total of 1,086 images with 3,158 spalling annotations are used for this 

demonstration. All labeled images are divided into 75% (815 images) for training and 

validation and 25% (271 images) for testing. Contrary to collapse classification, object 

detection does not require a separate a set of negative images (e.g. non-spalling images) 

because all object proposals which do not have a large overlap with a ground-truth box of 

spalling are inherently treated as negative images. The raw images are rescaled such that 

the shorter side of the image becomes 512 pixels. The selective search algorithm in a fast 

mode is performed on each of the rescaled images, which generates around 2,000 ~ 4,000 

object proposals in each image. Object proposals with ≥ 0.3 intersection-over-union (IoU) 

overlap with a ground-truth box of spalling are selected as positive images, and the 

remainder of the object proposals is assigned as negative images (Russakovsky et al., 2015; 

Zitnick and Dollar, 2014). Object proposals are not tested if the length of one of the four 

sides in the box is less than 20 pixels because it is too small to be worth evaluating. Ground-

truth spalling images with a width or height smaller than 20 pixels are removed. Overall, 

the selective search algorithm produces around 10~30 positive object proposal in each 

ground-truth spalling. As a result, 815 training images generate 65,652 positive and 

2,075,453 negative object proposals. 75% of positive and negative object proposals (49,239 

and 1,556,590) are used for training, and the remainder is assigned for validation. The 

object detection strategy assumes that at least one object proposal is generated from each 

spalling location visible in the image. In our dataset, positive object proposals cover 98.8% 

of ground-truth spallings (3,119/3,158 spalling), which yields a high rate of object 

inclusion (Russakovsky et al., 2015). 
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Fig. 5.7 shows an example that explains how to obtain input images (object 

proposals) for training a CNN. First, a tight bounding box is annotated for each spalling 

location, marked as blue boxes in Fig. 5.7(a). Among the extracted object proposals (2,469 

in this sample image), those that have a certain amount of overlap with ground-truth 

spalling are assigned as positive, marked as green, (68 object proposals) in Fig. 5.7(b) and 

the rest become negative, marked as red (2,401 object proposals) in Fig. 5.7(c). For visual 

clarity, only 50 negative object proposals are randomly selected in Fig. 5.7(c). The sample 

object proposals are shown in Fig. 5.7(d). Then, these images are warped to be a square for 

inputs to the CNN as in Fig. 5.7(e).  

   
(a) (b) (c) 

  
(d) (e) 

Figure 5.7 Generation of positive and negative images for training CNN: (a) ground-

truth spallings, (b) positive object proposals, (c) negative object proposals, (d) samples 

of object proposals with original aspect ratios, and (e) transformation of object proposals 

as a square to be an input for CNN. Note that the top and bottom rows in (d) and (e) are 
positive and negative object proposals.  

Once valid object proposals for positive and negative are extracted, they must be 

transformed into inputs for the CNNs. All object proposals are warped to 256 x 256, as 

with those used in collapse classification. Although this process may produce considerable 

distortion when the object proposals have high aspect ratio, it is advantageous in that 

warping associated with stretching or shrinking can contain the entire contents of the 

original images. For data augmentation, 227 x 227 patches are randomly cropped from 256 
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x 256 images in each epoch and random horizontal flipping is allowed. All configurations 

are the same as in the previous experiment except for the method for batch assignment and 

normalization. In each iteration, 153 positive and 359 negative patches are uniformly 

assigned to construct a batch of 512 patches. the sampling is intentionally biased towards 

positive object proposals because the number of positive object proposals is extremely 

small in number compared to the negative ones. Without using biased sampling, the 

classifier is trained toward predicting all negatives due to this large unbalance in the 

number of training samples. In each epoch, a total of 4,348 batches and 1,046 batches for 

training and validation are built, respectively. It takes around 6~7 hours for each epoch. 

Batch normalization is additionally implemented for training (Ioffe and Szegedy, 2015). 

Batch normalization allows us to use much higher learning rates but provides a fast rate of 

learning. The network is trained for 20 epochs, and the learning rate is logarithmically 

decreased from 0.1 to 0.0001 during training. The batch normalization technique is 

implemented in the MatConvnet library (Vedaldi and Lenc, 2014). 

At the test step, object proposals are first extracted from the test images and warp 

them in the same manner as in the training. 271 test images having 814 spalling locations, 

generates 704,314 object proposals. Each of the object proposals is forward-propagated 

through the trained CNN to identify its class (spalling or not) and its confidence score. 

Then, all scored object proposals in an image predicted as spalling (positive) are identified. 

Multiple overlapping positive object proposals are typically detected close to the correct 

location of spalling. For accurate estimation of the spalling locations, these repetitious 

predictions are penalized or eliminated using confidence values of each predicted object 

proposals to find the best fit a bounding box encompassing the corresponding spalling 

(Girshick et al., 2016). A simple non-maximum suppression algorithm is implemented. The 

confidence scores of the detected object proposals are sorted, and the highest scoring ones 

are greedily selected, denoted as A, while skipping detections with the object proposal, 

denoted as B if area (A ∩ B)/ min (area (A), area (B)) > 0.3 (MATLAB, 2015). Fig. 5.8 

shows an example of multiple positive (spalling) detections followed by localizing the 

bounding box using non-maximal suppression. Multiple positive object proposals in Fig. 

5.8(a) are thus reduced to a limited number as shown in Fig. 5.8(b).  
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(a) (b) 

Figure 5.8 Localization of spalling refined by a non-maximal suppression: (a) all object 

proposals predicted as positive and (b) final predicted spalling location after applying 

non-maximal suppression. The blue box is a ground-truth spalling. Note the numeric 
value on the top of each of the bounding boxes is a confidence value. 

5.6.2 Spalling detection results 

First, how well the trained classifier correctly identifies the class of object proposals is 

evaluated. Among 704,314 object proposals extracted from a set of test images, the trained 

classifier predicts 16,454 object proposals as positive and remainder, as negative. Rates of 

59.39% of true-positive (9,772/16,454 object proposals) and 1.7% of false negative 

(11,965/687,860 object proposals) are obatined. This result means that approximately 60% 

of the positive object proposals are correctly predicted as positive, and those do have a 

large overlap (> 0.3 IoU overlaps), while the remainder (around 40%) are falsely predicted, 

and those are generated either from the background or without sufficient overlap of the 

actual spalling. 

Next, repeated detection of object proposals at similar locations is penalized to 

predict the most accurate location of spalling(s). Finally, a total of 1,529 bounding boxes 

through non-maximum suppression are identified, and from these 619 spalling locations 

are correctly detected and localized (> 0.3 IoU overlap). The true positive rate is 40.48% 

(619/1529) and detected bounding boxes capture 62.16% (506/814) of all of the ground-

truth spallings. Since multiple bounding boxes are detected near some spalling locations, 

the number of bounding boxes (619) is somewhat larger than then number of detected 

ground-truth spallings (506). Some sample images of predicted spalling locations are 

shown in Fig. 5.9. Note that these rates will also vary depending on the CNN architectures 

and their parameters. Overall the performance of this approach is reasonably successful 
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and with this trained classifier, one of two detected bounding boxes likely include true 

spalling regions and they cover two-third of entire spallings on the testing images.  

 

Figure 5.9 Samples of spalling detection: Green boxes with a tag of “GT” are ground-

truth spalling areas, and red boxes with a tag of “PD” are predicted ones. Note that the 
aspect ratios of some images are changed for arrangement in this figure.  

5.7 Conclusion 

This study discusses a method for automating the process of post-event reconnaissance 

image analysis. The emerging class of techniques known as convolutional neural network 

algorithms is implemented to autonomously classify images by a scene-of-interest, and 

identify and localize target objects on the images. By incorporating the necessary domain 

knowledge, data augmentation and standardization methods that are suitable for this 

application are chosen and implemented. This strategy is successfully applied to classify 

image data in our post-event reconnaissance image database. Specific classification 

examples are considered to demonstrate the technique. Collapse image classification and 

spalling detection are identified from extensive collection of images. High classification 

accuracy in both cases is successfully achieved. A key contribution of this work is to 

develop and validate the method using a first-of-a-kind post-event database containing real-
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world images collected from past natural disasters. A significant volume of images our 

database enables training robust classifiers that can be applied for analysis and 

classification visual contents. This strategy will be a breakthrough in the understanding and 

analyses of post-event images in a rapid and efficient way.  
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CHAPTER 6. SUMMARY AND CONCLUSION 

In this dissertation, computer vision-based visual assessment techniques have been 

developed for civil engineering applications, focusing on the specific needs associated with 

visual inspection, and classification and documentation of visual data collected from post-

event reconnaissance. Harnessing the capability to use new visual sensors, sensing 

platforms, and high-performance computation resources, the techniques developed herein 

are capable of automated visual assessment in a rapid and efficient manner. Such research, 

which occurs at the intersection of disciplines, often results in significant contributions 

impacting multiple fields. Overall, the key contribution of the techniques developed is to 

serve as a solid foundation for enabling realistic vision-based visual assessment for civil 

engineering applications by exploiting computer vision techniques to their full potential. 

In past research, the only small quantity of images was collected or used in the development 

and validation of visual assessment techniques. Because those images are often captured 

under controlled circumstances, such as from favorable angles and distances with the 

intention of using them with specific algorithms, their use is limited for demonstrating their 

robustness and feasibility in real-world applications. However, in the real world, such 

specific and high-quality images are rarely collected or available, and cannot be isolated 

from the larger collection. In this study, the focus is on using large volumes of realistic 

images for enhancing and improving computer vision techniques as well as for validating 

those techniques. Here, modern computer vision techniques are fully incorporated in a task-

oriented manner based on the needs of the civil engineer, demonstrating that they can 

efficiently and accurately accommodate the complexity observed in real-world data sets. 

To my best knowledge, there is no literature that considers the development of vision-based 

visual assessment techniques using these concepts.   

Several techniques are proposed and validated. A brief summary of each technique 

are summarized as follows: 

 In chapter 2, a new damage detection technique is developed which can 

automatically process and analyze a large volume of images. Rather than searching 

for damage over the entire area of the images, objects that have areas susceptible to 
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damage (crack on bolts in this study) are first detected in all of the images with 

appropriate object recognition techniques. In addition, damage is detected based on 

prior engineering knowledge of how damage form on the object. Incorporating this 

experience increases its detectability, and also decreases false-positive detection. 

Using images from many different angles and prior knowledge of the typical 

appearance and characteristics of this class of faults, the technique can successfully 

detect cracks near bolts on a large steel beam. 

 In chapter 3, an automated image localization technique is developed to extract 

regions of interest (ROIs) on each of the images in a large set of image data before 

utilizing vision-based inspection techniques. ROIs are the portions of an image that 

contain the region of the structure that is targeted for visual interrogation. ROIs can 

be computed based on the geometric relationship between the collected images and 

the target areas on the structure. Analysis of such highly relevant and localized 

images would enable efficient and reliable visual inspection. The capability of the 

technique is successfully demonstrated to extract the ROIs of weld connections 

using a full-scale highway sign structure. 

 In chapter 4, the next generation of a structured annotation method is developed for 

describing the semantic contents of images originating from earthquake 

reconnaissance. Images of buildings focused on structural design and performance 

resisting earthquake are explored. An earthquake image ontology (EIO) is designed 

for formalized and structured descriptions of images. EIO integrates a broad set of 

terms and the associated relationships, enabling rich descriptions of images based 

on their contents and addressing the types of queries of interest to researchers. It is 

adequately extensible and flexible to successfully deal with a much broader range 

of images in the future. An image annotation tool assists human annotators as they 

choose appropriate terms and their relations in EIO. EIO facilitates image 

annotation and conversion of data into a searchable form using various queries. The 

feasibility and usefulness of the method are demonstrated using images from past 

earthquake. 

 In chapter 5, a method for post-disaster evaluation is developed by processing and 

analyzing big visual data in an autonomous manner. Recent convolutional neural 
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network (CNN) algorithms are implemented to extract the visual content of interest 

automatically from the collected images. Image classification and object detection 

are incorporated into the procedures to achieve accurate extraction of target 

contents of interest. As an illustration of the technique and its capabilities, two 

specific cases, collapse classification and spalling detection in concrete structures 

are demonstrated using a large volume of images gathered from past earthquake 

disasters. 

Some recommendations for future studies are scheduled to expand and improve the related 

techniques developed in this dissertation:  

 Promising technology applicable to drone-based visual inspection will be explored 

to build more robust, efficient, and fast systems. Recent developments in depth 

cameras, including Lidar, time-of-flight (ToF) cameras, and RGB-D cameras will 

expand an inspection by adding an extra depth dimension, which is not exactly 

captured with human eyes. These new devices represent an opportunity for 3D 

modeling of a structure and localization (navigation) in pre-built maps. They also 

can be integrated with a mobile platform due to their light weight and low cost 

(although it does depend on its range and accuracy). In addition, affordable and 

light real-time kinetic GPS enable high precision (centimeter-level) positioning. 

This technology will be implemented for autonomous vehicles (elaborate flight 

plan), aerial surveying and other uses in the future. 

 The autonomous image localization technique in chapter 2 will be explored to 

facilitate lifecycle management of infrastructure systems using citizen science and 

crowdsourcing images, as a part of National Science Foundation under Grant No. 

NSF-1645047. Citizen science and crowdsourcing provide the capacity to collect a 

large number of photos of certain structures, from many perspectives, at frequent 

intervals, and under many conditions. The developed techniques will provide an 

opportunity to make use of visual data collected from citizens to exploit automation 

and information extraction from images. With this technique, the human inspector 

and decision-maker can automatically extract and view the portion of every image 

that contains the core region of the structure to be examined.  
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 Applications of the developed image classification and object detection will be 

comprehensively searched (e.g. the objects and scenes listed in chapter 5.3). 

Collapse and spalling are just one of many examples that can benefit from the 

developed techniques. This work is a part of National Science Foundation under 

Grant No. NSF-1608762 and related works will continue to build more robust and 

various classifiers by expanding the number of image collections and their ground-

truth annotations.  
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