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Chapter 1 

Structural Health Monitoring of Large Structures

Long span bridges and tall buildings are costly to construct and can be critical to the

smooth operation of modern infrastructure. The loss or unnecessary closure of key

structures in the transportation network will have severe consequences on regional or

national economies. Thus, these are likely to be the structures we will initially invest

money in to implement monitoring systems. Global methodologies that facilitate

detection, quantification and location of damage in large civil structures are needed. These

techniques would monitor structural health in an automated (near real-time) mode,

reducing the uncertainty of the integrity of the structure and providing valuable

information to decision makers after a major event. Structures can be immediately closed

if they are damaged and remain open if they are intact, reducing the time that these

structures are unused. Monitoring the behavior of these structures will provide immediate

indications of the health of the structure, and significantly reduce the impact of

unnecessary closures on the economy of the region; and, potentially, the nation. Early

detection of damage will also reduce maintenance and operating costs. In the near future

the additional cost to install a monitoring system will be relatively inexpensive.

The Ji Lu bridge located in Taiwan provides an extreme example of the catastrophic

effects of natural hazards on our infrastructure. The bridge suffered heavy damage in the

Chi-Chi Taiwan earthquake on September 21st of 1999 [19]. The 240m long bridge has

two symmetric spans supported by a single pier. The deck of the bridge is a prestressed

concrete box girder supported by harped cables connected to the center of the deck. The
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bridge was under construction at the time of the earthquake. Three precast elements had

not been installed yet, and the cables had not undergone final tensioning. The 7.6

magnitude earthquake with an epicenter approximately 6 km northeast of the bridge

produced extensive damage in the deck and tower of the bridge. The tower was damaged

at both the base and deck levels, indicating large moments at these locations. Pounding of

the deck against the two end supports of the bridge was also observed. The deck also

presented extensive damage at the connection with the pier.

The Duzce and Kocaeli Turkey earthquakes in 1999 also seriously affected the

transportation system of the region [54]. During these events the Arifiye Overpass and the

Sakarya Center Bridge collapsed. The deck of the Arifiye Overpass was composed of five

U-shaped prestressed concrete beams and was supported by three piers and two

abutments. This four span bridge collapsed due to excessive ground displacements

disjointing the deck to one of the abutments. The Sakarya Center Bridge had eight spans

of simply supported girders and collapsed for similar reasons.

The Bolu Viaduct suffered severe damage during the Duzce earthquake in 1999. The

viaduct was under construction at the time of the earthquake, but all structural work was

completed. The 2313m long viaduct consists of 117 spans, each 39.6m long. Seven

prestressed concrete beams are used in each span and are joined by a deck slab at the piers.

The energy dissipation devices were severely damaged and large deformation in the

superstructure occurred during the earthquake as shown in Fig. 1-1.

Currently, visual inspection is the most common technique for identifying damage in

bridges and other structures and serves as the standard to which all other nondestructive

evaluation technologies may be compared. Visual inspection is costly, time consuming,

and prone to human error. The high costs for annual inspection are evident. For example,

the New Jersey Department of Transportation budgeted over $24 million for bridge

inspections in the 2003 fiscal year capital program[66]. 
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The time required for such inspections also should be considered. The Seattle Department

of Transportation (SDOT) operates and maintains over 150 bridges throughout Seattle,

including four movable bridges that must be inspected. After a major catastrophic event

such as an earthquake, key bridges on lifeline routes are visually inspected to assess their

structural integrity and provide accurate information so that all commuters and other city

agencies responding to emergencies can plan safe travel routes [78]. Following the

inspection of the “lifeline” bridges, the remainder of the 150 bridges and numerous

additional structures in the city must be checked for safety.

In addition to the time and cost for such visual inspections, the consistency of this

approach has been questioned. A study done by the Non-Destructive Evaluation

Validation Center (NDEVC) in McLean, Virginia found that the accuracy and reliability of

visual inspection can vary considerably [68]. Factors such as fear of traffic, visual acuity

and color vision, light intensity, inspector workload, perceptions of maintenance,

complexity, and accessibility produced significant variability in routine visual inspections.

Moreover, in-depth visual inspections using visual inspection alone are not likely to detect

FIGURE 1-1. Bolu Viaduct after Duzce Earthquake

(a) Energy Dissipation Device

(b) Deck Offset
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or identify the specific types of defects for which the inspection is prescribed, and may not

reveal deficiencies beyond those that could be noted during a routine inspection. 

It is clear that there is a need for more reliable, faster and less expensive methods for the

evaluation of structures, in particular for expensive and vital structures that are elements

of lifeline routes. In the case of a catastrophic event, these routes must quickly be

inspected to allow access to emergency teams. There is also a need for methodologies to

increase the reliability of the current damage detection techniques, reducing the time and

expense involved.

Structural health monitoring (SHM) techniques identify damage by determining changes

in the properties of structures. This dissertation focuses on SHM techniques using changes

in the dynamic properties of the structure. Although a SHM technique by itself might not

provide a complete solution for the monitoring of structures, it can give the inspectors a

good estimation of the structure’s health in a short period of time. Advances in sensors,

data acquisition systems and data networks [62] are facilitating the implementation of

these techniques, even in the case of large civil structures [72]. Thus, additional research is

needed to develop reliable SHM techniques that will allow a quick and accurate

evaluation of structures after a catastrophic event, as well as inexpensive damage

identification in structures over their lifetime.

This dissertation proposes a SHM technique based on changes in the modal parameters of

the structure, which are obtained from ambient vibration tests using methods currently

available in literature. A parameter identification technique is proposed herein, which uses

modal parameters to detect changes in the properties of structural members, based on the

eigenvalue problem of the undamped equation of motion.
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1.1  Review of Previously Developed SHM Techniques

Different types of structural health monitoring methodologies are available depending on

the level of identification needed by the user. Traditionally SHM methodologies have been

classified into four levels [76]. Level one techniques determine if damage exists in the

structure. The existence and location of damage is identified by level two techniques.

Level three techniques detect the existence, location and severity of damage. Level four

techniques identify the existence, location and severity of damage, as well as define the

remaining life of the structure. Additional variables, such as the type of damage or time at

which damage occurs, can also be considered by SHM techniques.

SHM methodologies which use variations in the natural frequencies can be used to detect

the existence of damage. Salawu [77] presents a review of several methodologies to

identify damage in a structure based on changes in the natural frequencies. Several

examples are considered in which damage is identified, and in some cases located, using

only changes in the resonant frequencies. This reference includes a section discussing the

factors to consider when using natural frequencies for damage detection, including topics

such as sensor location and frequency range of the measurements.

If the existence and location of damage are required, determination of the mode shapes of

the structure is appropriate for some structures. For this task indices such as the modal

assurance criteria (MAC) and coordinate modal assurance criteria (COMAC) can be used.

The MAC determines the relationship between two mode shapes. If the two mode shapes

are linearly dependent the MAC is equal to one, but if they are orthogonal the MAC is

equal to zero. The COMAC between two sets of mode shapes is equal to one if the mode

shapes are equal at coordinate . The COMAC will be zero if no correlation exists

between the mode shapes. The COMAC can be used to locate damage by identifying the

maximum deviation of the mode shape from the undamaged value. Nolambi et al. [69],

successfully used COMACs to locate damage in a reinforced concrete beam.

j
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Several of these indices, including the MAC, the COMAC, the Mode Shape Curvature

(MSC), the Modal Strain Energy Index (MSEI), and Modal Flexibility Index (MFI) were

compared by Wang et al [84] using a numerical model of the Tsing Ma Bridge. The Tsing

Ma Bridge was the longest suspension bridge in the world when opened to the public in

1997, with a main span of 1377m (4517 ft). The deck is a steel truss supported by two

206m (676 ft) tall reinforced concrete towers, and it carries six lanes of traffic on the upper

level and two railway tracks and two emergency lanes on the lower level. For this study

the authors developed a finite element model of the bridge using ABAQUS. Three damage

scenarios were studied, where damage was induced by reducing the stiffness of members

by 98%. All the methodologies tested in this paper are based on changes in the mode

shapes of the structure. The authors determined that, from the methodologies studied, the

MSC, MSEI and MFI were the most appropriate for the Tsing Ma Bridge. The MSC and

the MSEI were the only methodologies that identified all damage case scenarios, although

some false positives were obtained.

Another possible implementation of SHM techniques is to identify the time when damage

occurred. This goal can be achieved by wavelet transforms as shown by Hou et al. [42].

Here the wavelet transform is used to identify discontinuities in the acceleration records,

indicating that a member of the structure has fractured. The methodology was successfully

applied to the IASC-ASCE Benchmark Problem, discussed later in this dissertation. It is

not clear that this method can be implemented in the case of gradual damage.

SHM methodologies to detect the existence, location and degree of damage in a structure

are also available in the literature. Most of these techniques use two primary steps. First, a

modal identification method is used to determine the natural frequencies and mode shapes

of the structure. The second step is to use the identified modal parameters to calculate

structural parameters such as moment of inertia in structural members. Damage is located

and quantified by examining the changes in the structural parameters between two
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different tests. The field of modal identification has been extensively studied in the

literature. In contrast, few parameter identification methodologies are available.

One example of a two step method is discussed in [22]. Here the modal parameters are

obtained using MODE-ID developed by Beck et al. [3]. The method obtains the most

likely values of natural frequencies by reducing the error between the measured response

of the structure and the calculated response from a numerical model. The methodology

gives the modal frequencies, damping ratios, participation factors and mode shapes at the

measured degrees of freedom and participation factors. In the second part of the method,

the mass and stiffness matrices are identified by updating a model of the structure using a

Bayesian probabilistic framework [4].

Bernal [7] also uses a two step method for damage detection. In this case the ERA-OKID

algorithm is used for the identification of the natural frequencies and mode shapes of the

damage and undamaged structures. Next, the flexibility matrices for both are calculated

and compared to determine the existence of damage. Then, Damage Localization Vectors

(DLV) are used to locate the damaged vectors.

1.2  Implemented SHM Techniques for Large, Flexible 
Structures

Flexible structures such as cable-stayed and suspension bridges are increasing in

popularity for spans over 200m due to their economy and attractive appearance. The

longest cable-stayed bridge today is the Tatara bridge in Japan with a main span of 890m,

followed by the Normandi bridge in France with a 856m span. These are complex

structures, difficult to model and exhibiting large interactions between the translational

and rotational motions. They present new challenges to the SHM continuity, such as very

low frequencies of vibration and closely spaced modes. A number of papers describing the

studies of modal identification techniques and damage identification can be found in the
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literature. To date there does not seem to be a working implementation of a SHM

methodology for either of these structures.

The Hong Kong Highway Department made an important investment in the on-line

monitoring of three long-span bridges [58]. The Tsing Ma suspension bridge, Kap Shui

Mun cable-stayed bridge, and the Ting Kau cable-stayed bridge were instrumented with a

total of 774 permanent sensors. A number of studies have been performed using the

instrumentation on these bridges in the fields of modal identification and SHM.

Probabilistic neural networks (PNN) have been used for the identification and location of

damage in a numerical model of the Ting Kau Bridge [67]. The authors concluded that

damage in the bridge could be identified and located with an 85% or greater probability

using 20 modes of vibration and PNN. Damage was simulated by reducing the stiffness of

members of connections or reducing the tension force of a cable for different case

scenarios. These damage scenarios considered a 20% reduction in the tension of a cable,

75% loss in the bending stiffness of a connection in the deck, or a 90% loss in the stiffness

of a girder. The PPN was trained using natural frequencies from the numerical model.

These natural frequencies were contaminated with a random number, simulating errors in

the modal identification. In this paper the authors did not use any information from the

vibration modes.

Qin et al. [73] discussed the modal identification of the Tsing Ma Bridge using the fast

eigensystem realization algorithm (FERA). FERA is a modified version of the ERA and

uses an eigensystem decomposition of the Hankel matrix instead of the normal singular

value decomposition reducing the processing time. Testing on the bridge was performed

immediately after its construction. This testing was intended to obtain a digital signature

of the bridge for future implementations of SHM methodologies. Ambient vibration

produced by wind and the movement of construction machinery was used. The random

decrement technique was employed to obtain free response data from the acceleration

records obtained. Due to the size of the structure and the availability of sensors, the bridge
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was divided into 15 subsections. Testing was carried out on each section, and a reference

signal was maintained between the different sections. Thirteen acceleration measurements

were obtained for every subsection, including 3 at the reference point. Mode shapes were

obtained by assembling the partial mode shapes obtained from each subsection. The

authors obtained a total of 79 natural frequencies from the structure; 35 mode shapes with

26 coordinates were identified from these 79 modes. Many of the transverse modes of the

deck were found to be coupled with torsional modes. The identified modal parameters

obtained showed good agreement with the modal parameters from a finite element

analysis.

The structural health monitoring system of the Namhae Suspension Bridge is described in

Kim et al. [56]. The bridge connects mainland Korea with Namhae Island and has a total

length of 660m. The structural health monitoring system of the bridge consists of 74 static

sensors and 36 channels for dynamic measurements. The static sensors include 30

tiltimeters and 44 static strain gauges. The dynamic system includes 4 displacement

sensors, 10 dynamic strain gauges, 12 uniaxial accelerometers, 6 channels for triaxial

accelerometers, and 4 channels for anemometers. The natural frequencies of the bridge

have been identified using the dynamic system installed in the bridge. In this study the

natural frequencies were obtained by identifying peaks in the power spectral density

functions.

Lew et al. [60] studied four different methods for the modal identification of flexible

structures. The structure selected for this study was a Mini-Mast structure at the NASA

Langely Research Center. The data for the identification was obtained from a numerical

model of the structure and different levels of noise were superimposed. The eigensystem

realization algorithm (ERA), the ERA with data correlation (ERA/DC), the MDVV

algorithm (named after Moonen, DeMoor, Vandenberghe and Vandewalle), and the Q-

Markov algorithm. Impulse response functions were available for the different algorithms.

The authors found that ERA/DC had a computational advantage over ERA because it
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produces a square Hankel matrix, although both methods produced similar results. The Q-

Markov method requires more data than ERA to obtain similar results. Similarly, the Q-

Markov method required a larger matrix for the singular value decomposition.

Huang et al. [43] implemented the Ibrahim time-domain (ITD) technique to measure the

modal parameters Yuang-Shan bridge. The 360 m long highway bridge consists of a three-

span continuous prestressed concrete box-girder. Two types of excitation were used in this

paper. A truck falling from a block or suddenly stopping on the bridge provided the first

type of excitation, and ambient excitation provided the second type. The random

decrement technique [24] was used for the implementation of the methodology using

ambient vibration. The authors obtained 14 modes with the free vibration data and 12

modes with the ambient vibration tests. Good correlation was found between the modes

found with the ambient vibration tests and the free response tests.

Kim et al. [55] studied the effects of the mass of vehicles crossing different type of

bridges. The bridges studied were a suspension bridge with a main span of 404m and two

side spans of 128m, a five span highway bridge with a maximum span of 95m and a

simply supported bridge with a span of 46m. Thirty minutes of acceleration records were

obtained for each bridge. The data was categorized according to the vehicle mass, and the

power spectral density was calculated for each case. The authors did not find any

difference in the peaks of the power spectral densities for the first two bridges, indicating

that the effect of the mass on these structures was small. However, in the small bridge the

variation of the natural frequency was estimated to be 5.4%.

1.3  Overview

In this dissertation a two step structural health monitoring methodology is proposed and

validated. The technique uses available modal identification algorithms such as the natural

excitation technique (NExT), and the eigensystem realization algorithm (ERA) to obtain
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natural frequencies and mode shapes of the structure. A new parameter identification

technique is proposed and implemented to assess the health of the structure. An approach

is described to implement the parameter identification technique using a procedure similar

to finite elements. This facilitates implementation of the technique to any type of

structure. 

In the second chapter of this dissertation the structural health monitoring technique is

described in detail along with necessary background information. Here NExT and ERA

are discussed. Special emphasis is given to the effects of using free vibration response

instead of impulse response functions in ERA. The chapter finishes with the description of

the least squares solution of the eigenvalue problem. This method is used for the

identification of parameters in elements of the structure, such as Young’s modulus or

moment of inertia. A full description of the method is provided, including a discussion of

how to implement it using a finite element framework. This includes the formation of

elemental matrices, transformation from local to global coordinates, application of

constraint equations and, finally, boundary conditions. Although the methodology

described is developed for a beam element, it can be extended to other finite elements.

This facilitates the implementation of the technique to any type of structure.

The third chapter discusses the implementation of the SHM methodology to the IASC-

ASCE SHM benchmark problem. This benchmark problem has served as a testbed for the

proposed methodology during the last four years. Descriptions of the benchmark structure

and the various numerical and experimental phases of the benchmark problem are

provided. The results and lessons learned from the implementation of the proposed

methodology are also discussed herein.

The sensitivity of static and dynamic parameters to damage in the deck of a cable-stayed

bridge is discussed in chapter four. The structure selected for this study is the Bill

Emerson Memorial Bridge located in Cape Girardeau, Missouri, U.S.A. The sensitivity of
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the static displacements, natural frequencies and mode shapes to damage in the deck of the

bridge is studied. For this study a nonlinear static model of the bridge is developed. A

discussion of the challenges in modeling these types of structures is provided.

Chapter five presents the implementation of the proposed SHM technique to the numerical

model of the Emerson Bridge described in chapter four. Here different identification

models are studied. NExT and ERA are used for the identification of the modal parameters

and the least squares solution of the eigenvalue problem is used to detect changes in the

elemental properties of the structure. Differences between the implementation of the

technique for large scale structures such as the Emerson Bridge and smaller structures

such as the benchmark structure of chapter three are identified, providing important

information for future implementations of the technique.

Chapter six discusses the design, construction and testing of a laboratory experiment used

for verification of the proposed SHM methodology. A cable-stayed bridge model with one

pier and two spans is designed and constructed for this purpose. Modal identification was

performed using hammer excitation and the ERA. Damage is induced in the bridge deck

by reducing the section of one of the members. The damage is correctly located by

identifying changes in the structural parameters using a least squares solution of the

eigenvalue problem.

A summary and conclusions of the presented work is given in chapter seven. A section

describing the pros and cons of the proposed methodology is provided in this chapter.

Conclusions regarding the implementation of the methodology to large scale structures

and a comparison to implementations on other types of structures are also discussed.

Finally, some possibilities for future research in the area of SHM for large scale structures

are provided.
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Chapter 2 

Structural Health Monitoring Techniques

Structural Health Monitoring (SHM) is a topic of interest for researchers in the present

decade, and currently SHM techniques are being developed and verified around the world.

Recent conferences such as the International Workshop in Structural Health Monitoring,

usually held at Stanford University, [21] and the International Conference on Structural

Health Monitoring, held this year in Tokyo, Japan (November 13-15), demonstrate the

interest in this topic. 

Different approaches are available depending on the type of damage identification

required. For example, wavelet transforms are used to identify discontinuities in

acceleration records, making it possible to identify the time when damage occurs [42], or

changes in the flexibility matrix can be used to detect the existence of damage [8]. Several

of these methods use modal parameters for damage identification. Typically these

methods have two steps. First, the natural frequencies and mode shapes of the structure are

identified using a modal identification technique. Then, structural parameters are

identified. The field of modal identification has been widely studied by aerospace,

mechanical and civil engineers, and method such as the Eigensystem Realization

Algorithm are widely used for a vast range of applications. In contrast, few structural

parameter identification techniques are available in the literature.

In this chapter a SHM technique is proposed. The method uses the eigenvalue problem of

the undamped equations of motion to identify stiffness values. Changes in these stiffness
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values will indicate the location and extent of damage in a structure. The first part of this

chapter discusses the methods used for the identification of the modal parameters. Next,

the structural parameter identification technique proposed in this dissertation is discussed.

Last, two indices used for damage identification are presented. These indices are used to

identify the change in order of mode shapes in structures due to damage (i.e. the 9th mode

trading places with the 8th mode) in the subsequent parameter studies.

2.1  Modal Identification

In this section two methods are discussed which, when combined, are the basis of the

modal identification step. These include the natural excitation technique (NExT) and the

eigensystem realization algorithm (ERA). The first method is used to obtain a free

vibration record from ambient vibration tests, allowing modal identification without

knowing the forces exciting the structure. The ERA is used to obtain the modal parameters

of the structure from the free vibration records.

2.1.1  Natural Excitation Technique

The natural excitation technique allows one to obtain data that can be treated as free

responses from a structure when the input is not measured, or is actually unmeasurable.

Here the excitation is assumed to be stationary with frequency content that spans the

modes of vibration of the structure and uncorrelated with the response of the structure.

The method was developed by James et al. [45-47], and shows that the matrix of

correlation functions between the responses of the system and a response to be selected to

be the reference response is a solution of the homogenous matrix equation of motion. 

Consider the equation of motion

, (2-1)My·· t( ) Cy· t( ) Ky t( )+ + u t( )=
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where ,  and  are the mass, damping and stiffness matrices of the structure,  is

the vector of displacements at time ,  are the excitation forces and  denotes the

derivative with respect to time. When the inputs are random processes Eq. 2-1 is written

, (2-2)

where  is a stochastic displacement vector process and  is the stochastic force

excitation vector process. Postmultiplying Eq. 2-2 by a reference scalar stochastic process

 yields

. (2-3)

Taking the expected value of Eq. 2-3 we obtain

, (2-4)

where  denotes a vector of correlation functions between the random processes at

times  and . Recognizing that the excitation forces are uncorrelated with the responses

of the structure, Eq. 2-4 yields

. (2-5)

For weakly stationary processes it can be shown that [5]

, (2-6)

M C K y t( )

t u t( ) ·( )

MY·· t( ) CY· t( ) KY t( )+ + U t( )=

Y t( ) U t( )

Yi s( )

MY·· t( )Yi s( ) CY· t( )Yi s( ) KY t( )Yi s( )+ + U t( )Yi s( )=

MR
Y··Yi

t s,( ) CR
Y· Yi

t s,( ) KRYYi
t s,( )+ + RUYi

t s,( )=

R( )

t s

MR
Y··Yi

t s,( ) CR
Y· Yi

t s,( ) KRYYi
t s,( )+ + 0=

R· YYi
τ( ) R

Y· Yi
τ( ) R–

YY· i
τ( )= =
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where . Taking the 4th derivative of Eq. 2-4 yields

. (2-7)

Equation 2-7 is of the same form as Eq. 2-1, showing that the correlation functions can be

viewed as free responses.

2.1.2  Eigensystem Realization Algorithm

The Eigensystem Realization Algorithm was developed by Juang and Pappa in 1985 [49],

and it has shown to be an effective method for modal identification of flexible structures

[60]. This algorithm uses the principles of minimum realization to obtain a state space

representation of the system. For a better understanding of how the algorithm works, and

the implications of using the NExT or RDT with ERA, it is necessary to introduce the

concepts of realizations and Markov parameters [51, 48].

The state space representation of a linear, time-invariant, discrete system is defined by

(2-8)

, (2-9)

where , ,  and  are the state matrices, and  is the state vector at the -th step; 

( ) and  ( ) are the input and output vectors of the system. Assume that the

system is excited by a discrete-time impulse function with an amplitude equal to one, and

that the initial conditions of the system are zero,

; (2-10)

τ t s–=

MR··Y··Y·· i
t s–( ) CR· Y··Y·· i

t s–( ) KR
Y··Y·· i

t s–( )+ + 0=

x k 1+( ) Ax k( ) Bu k( )+=

y k( ) Cx k( ) Du k( )+=

A B C D x k u

r 1× y m 1×

u 0( ) 1= u k( ) 0=
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and

; , (2-11)

for  = 1, 2, 3... s. Inserting these values into Eqs. 2-8 and 2-9, we obtain

; ; ; . (2-12)

The constant matrices , , ,...  are known as Markov parameters. A

realization of the system is defined as the matrices ,  and  that best yield the

responses of the system to be identified.

The ERA is a technique used to determine the system matrices from pulse response

records. The ERA uses the Markov parameters for the identification of the system. The

first step in the ERA is to form the Hankel matrix from the system responses as

, (2-13)

where  and  are the number of columns and rows of the Hankel matrix. Substituting

Eq. 2-12 in Eq. 2-13, the Hankel matrix becomes

. (2-14)

x 0( ) 0= x k( ) 0≠

k

y0 D= y1 CB= y2 CAB= yk CAk 1– B=

D CB CAB CAk 1– B

A B C

H 0( )

y1 y2 … yγ

y2 y3 … yγ 1+

yp yp 1+ … yp γ 1–+

= ... ...

γr pm

H 0( )

CB CAB … CAγ 1– B

CAB CA2B … CAγB

CAp 1– B CApB … CAp γ 2–+ B

= ... ...
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The matrix  can be written in terms of two matrices as

, (2-15)

where  is defined as the observability matrix and  is defined as the controllability

matrix. The next step is to perform a singular value decomposition of the Hankel matrix 

, (2-16)

where the matrix  contains nonnegative diagonal elements in decreasing order, and the

columns of  and  are orthonormal. Under ideal conditions, the matrix  is

, (2-17)

where  is the order of the system to be identified and the  are matrices of appropriate

dimensions. In reality, the diagonal terms of the matrix  are non-zero as they are

contaminated with small singular values. By eliminating the small singular values it is

possible to obtain a minimum realization that represents the system to be identified.

From Eqs. 2-16 and 2-17 we can write

, (2-18)

; . (2-19)

H 0( )

H 0( ) PQ

C
CA

CAp 1–

B AB … Aγ 1– B= =

...

P Q

H 0( ) RΣST=

Σ

R S Σ

Σ Σg 0

0 0
=

g 0

Σ

H 0( ) RΣ1 2/( ) Σ1 2/ ST( ) PQ= =

P RΣ1 2/= Q Σ1 2/ ST=
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After examining Eqs. 2-19 and 2-15 we conclude that the first  rows of  are the matrix

, and the first  columns of  are .

To calculate the system matrix , another Hankel matrix  is computed as

. (2-20)

, (2-21)

. (2-22)

From Eq. 2-22  is given by

. (2-23)

When the ERA is used in conjunction with NExT, the input signal is not an impulse

response function but a free response function. Thus, the initial conditions are

; . (2-24)

With these new initial conditions Eq. 2-12 becomes

; ; ; , (2-25)

m P

C r Q B

A H 1( )

H 1( )

Y2 Y3 … Yγ 1+

Y3 Y4 … Yγ 2+

Yp 1+ Yp 2+ … Yp γ+

CAB CA2B … CAγB

CA2B CA3B … CAγ 1+ B

CApB CAp 1+ B … CAp γ 1–+ B

= = ... ...

... ...

H 1( ) PAQ=

H 1( ) RΣ1 2/ AΣ1 2/ ST=

A

A Σ 1 2/– RTH 1( )SΣ 1 2/–=

u k( ) 0= x k( ) 0≠

Y0 Cx 0( )= Y1 CAx 0( )= Y2 CA2x 0( )= Yk CAkx 0( )=
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and the Hankel matrix is

. (2-26)

With the singular value decomposition Eq. 2-26 becomes

, (2-27)

where

. (2-28)

Similar to the case of an impulsive input, the  matrix will still be the first  rows of .

However, in this case the  matrix cannot be described as the first  columns of . To

calculate the matrix  the Hankel matrix  is formed

,(2-29)

. (2-30)

H 0( )

Y1 Y2 … Yγ

Y2 Y3 … Yγ 1+

Yp Yp 1+ … Yp γ+

CAx 0( ) CA2x 0( ) … CAγx 0( )
CA2x 0( ) CA3x 0( ) … CAγ 1+ Bx 0( )

CApx 0( ) CAp 1+ x 0( ) … CAp γ 1–+ x 0( )

= =... ...

... ...

H 0( ) RΣST PQx= =

Qx x 0( ) Ax 0( ) … Aγ 1– x 0( )=

C m P

B r Qx

A H 1( )

H 1( )

Y2 Y3 … Yγ 1+

Y3 Y4 … Yγ 2+

Yp 1+ Yp 2+ … Yp γ+

CA2x 0( ) CA3x 0( ) … CAγ 1+ x 0( )
CA3x 0( ) CA4x 0( ) … CAγ 2+ Bx 0( )

CAp 1+ x 0( ) CAp 2+ x 0( ) … CAp γ+ x 0( )

= =... ...

... ...

H 1( ) PAQx RΣ1 2/ AΣ1 2/ ST= =
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Using Eq. 2-30 we can obtain 

. (2-31)

As shown by Eqs. 2-23 and 2-31 the ERA can be applied to free vibration data without

modification for the calculations of the  and  matrices. The  matrix cannot be

identified with the free response data obtained from NExT.

2.2  Parameter Identification Technique

Once the modal parameters of the structure are determined, these must be related to

structural parameters such as moment of inertia or Young’s modulus to detect damage.

The change in these parameters will allow us to identify, locate and quantify the damage

in a structure. In this section a method is proposed to identify structural parameters from

the modal data obtained from the ERA.

2.2.1  Least Squares of Eigenvalue Problem

The structural parameter identification method proposed in this section uses the undamped

natural frequencies and mode shapes to determine parameters that form the elemental

stiffness matrices of the structure. Although in this dissertation emphasis is given to the

identification of Young’s modulus, the methodology can also be used to identify other

parameters that affect the stiffness matrix such as moments of inertia. To use this method

the mass matrix of the structure must first be estimated. Consider the undamped

eigenvalue problem

, (2-32)

A Σ 1 2/– RTH 1( )SΣ 1 2/–=

A C B

K Mλ i–( )φi 0=
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where  and  are the  stiffness and mass matrices, respectively, and  and 

are the i-th eigenvalue and eigenvector. Equation 2-32 can be written as

. (2-33)

Typically the number of identified modes is significantly smaller than the number of

degrees of freedom in the identification model. Thus, from Eq. 2-33 it is not generally

possible to determine  because there are  unknowns (due to symmetry),

and there are only  equations, where  is the number of identified natural

frequencies and mode shapes. Equation 2-33 can be rewritten as

, (2-34)

where  is a matrix formed using the elements of the i-th eigenvector  and  is a vector

of the unknown parameters. To demonstrate this concept consider the n-story shear

structure shown in Fig. 2-1. The left hand side of Eq. 2-33 is

K M n n× λi φi

Kφi Mλ iφi=

K n n 1+( )×( ) 2⁄

n m× m

θir Mλ iφi=

θi φi r

m1

m2

mn

k1

k2

kn

FIGURE 2-1. Lumped Mass Model of an n-story Structure
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, (2-35)

where  is the k-th component of the i-th mode shape. This term can be rewritten as

. (2-36)

Stacking Eq. 2-34 for the m identified modes we write

, (2-37)

where

, and . (2-38)

From Eq. 2-37 the vector of unknown parameters  can be obtained using

(2-39)

Kφi

k1 k2+ k2– ... 0 0

k2– k2 k3+ ... 0 0

0 0 kn kn 1–+ kn–

0 0 kn– kn

φi 1,

φi 2,

φi n 1–,

φi n,

= ...

...

......

φi k,

φi 1, φi 1, φi 2,– 0 0 0

0 φi 2, φi 1,– φi 2, φi 3,– 0 0

0 0

0 0 φi n 1–, φi n 2–,– φi n 1–, φi n,–

0 0 0 φi n, φi n 1–,–

k1

k2

kn 1–

kn

θir=...

...
... ...

Θr Γ=

Γ

Mλ1φ1

Mλ2φ2

Mλmφm

= Θ

θ1

θ2

θm

=

r

r Θ p– Γ=
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where denotes the pseudoinverse. If more equations are available than unknowns,

the solution is equivalent to a least squares solution for the unknown parameters.

One of the advantages of this method is that information related to the geometry of the

structure is used, and only nonzero elements of the stiffness matrix are identified. It is also

possible to include known values of the stiffness matrix (i.e., members known to be

healthy) to improve the results obtained.

The procedure to obtain the matrix  in Eq. 2-34 can be automated in a way similar to the

development of the finite element method. When creating the identification finite element

mesh, special care should be taken to account for elements whose stiffness cannot be

isolated from the contribution of nearby elements. Consider the two floor structure shown

in Fig. 2-2a, where the parameters to be identified are the Young’s moduli for every

element. Assuming that the floors are rigid and only one measurement is obtained per

floor, it is not possible to identify Young’s modulus for each element. Elements 1, 2 and 3

will affect the stiffness of the first floor, and elements 4, 5 and 6 will affect the stiffness of

the second floor. Thus, the correct identification model to use in this case is the two degree

of freedom identification model shown in Fig. 2-2b. Typically, modeling errors will affect

the resulting identified parameters due to the differences between the real structure and the

identification model. The identified parameters are not an actual representation of the real

( ) p–

θi

1 2 3

4
5

6

FIGURE 2-2. Two Floor Structure and Identification Model

a. Two floor structure b. Identification model



25
values but the variations of these parameters are proportional to the reductions induced by

damage making it possible to identify and quantify the location of damage [15].

In the next paragraphs these steps are described for an Euler-Bernoulli element. A similar

procedure can be applied for other finite elements.

Elemental Matrix

In this section the elemental identification matrix, , for a shear beam element is

developed. At the end of this section the elemental identification matrix for an Euler-

Bernoulli beam is obtained through a similar procedure. 

Consider the stiffness matrix for the 2D shear beam finite element shown in Fig. 2-3.

, (2-40)

θe

FIGURE 2-3. Shear Finite Element

X

Y

α i 1,

α i 2,

α i 3,

α i 4,

Z

ke
12E
L3

----------

Iy 0 Iy– 0

0 Ix 0 Ix–

Iy– 0 Iy 0

0 Ix– 0 Ix

=
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where  is the Young’s modulus,  and  are the cross sectional moments of inertia

with respect to the X and Y axes, respectively, and  is the element length. Multiplying 

by the i-th mode shape  we obtain

, (2-41)

, (2-42)

where  is the j-th element of the i-th eigenvector. If the parameter to be identified is

the stiffness, using Eq. 2-42 we can write the elemental identification matrix for the i-th

mode shape  and the vector of unknown parameters  as

, and , (2-43)

respectively.

E Ix Iy

L ke

φi

keφi
12E
L3

----------

Iy 0 Iy– 0

0 Ix 0 Ix–

Iy– 0 Iy 0

0 Ix– 0 Ix

α i 1,

α i 2,

α i 3,

α i 4,

=

keφi
12E
L3

----------

α i 1, Iy α i 3, Iy–

α i 2, Ix α i 4, Ix–

α i 3, Iy α i 1, Iy–

α i 4, Ix α i 2, Ix–

=

α i j,

θe i, re

θe i,
12
L3
------

α i 1, Iy α i 3, Iy–

α i 2, Ix α i 4, Ix–

α i 3, Iy α i 1, Iy–

α i 4, Ix α i 2, Ix–

= re E[ ]=



27
If the parameters to be identified are the moments of inertia of the element, Eq. 2-43

becomes

, and . (2-44)

The number of rows and columns of the elemental identification matrix are equal to the

number of degrees of freedom in the element and the number of unknown parameters

respectively.

Coordinate Transformation

The matrices  found in Eqs. 2-43 and 2-44 are in local coordinates. These identification

matrices can be transformed to global coordinates using a transformation matrix, similar

to the approach used in the finite element method. Consider the coordinate transformation

, (2-45)

where  is the coordinate transformation matrix. Post-multiplying both sides of Eq. 2-45

by  yields

(2-46)

, (2-47)

θe i,
12E
L3

----------

0 α i 1, α i 3,–

α i 2, α i 4,– 0

0 α i 3, α i 1,–

α i 4, α i 2,– 0

= re
Ix

Iy

=

θe

k ′e TTkeT=

T

φi

k ′eφi TTkeTφi=

k ′eφi TTkeφ†
i=



28
where the vector  is the i-th eigenvector in local coordinates. Eq. 2-47 can be

written as

, (2-48)

where 

. (2-49)

Note that for this transformation the identification matrix  is formed with the

eigenvectors in local coordinates .

Matrix Assembly

Once the element matrices are obtained for all of the elements, the global identification

matrix  for the i-th mode of vibration is assembled. The dimension of  is , where

 is the number of degrees of freedom of the identification model, and  is the number of

unknown parameters. The elements of the  matrix for the j-th element will be placed

in the columns corresponding to the unknown parameters of this element and the rows

corresponding to the degree of freedom of this element. 

To illustrate the process consider the 2DOF structure shown in Fig. 2-4. Assuming that the

unknown parameter is Young’s modulus, , the elemental identification matrices are

 and . (2-50)

φ†
i Tφi=

k′ eφi θ′e i, re=

θ′e i, TTθe i,=

θe i,

φ†
i( )

θi θi n l×

n l

θe i,

E

θ1 i,
12
L3
------

α i 1, I α i 2, I–

α i 2, I α i 1, I–
= θ2 i,

12
L3
------

α i 2, I α i 3, I–

α i 3, I α i 2, I–
=
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The assembled identification matrix is

. (2-51)

The first column corresponds to the unknown parameter , and the second parameter

corresponds to the parameter . The rows correspond to each degree of freedom ( ,

, ).

The degree of freedom  corresponds to the base of the structure. This degree of

freedom is included in the elemental and general identification matrices. In a later section

we will see how to consider boundary conditions.

Constraint Equations

Constraints can be considered to include relationship between degrees of freedom. A

common application of constraint equations is rigid links. These elements rigidly connect

a slave and a master node. The degrees of freedom of the slave node will depend only on

FIGURE 2-4. 2DOF Structure
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α i 1, I α i 2, I– 0
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0 α i 3, I α i 2, I–
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E1

E2 α i 1,

α i 2, α i 3,
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the displacement and rotation of the master node. In the finite element method constraint

equations are applied to the stiffness matrix using the equation

(2-52)

where  is the constraint equation matrix, and  is the stiffness matrix after the

constraint equations are applied. Equation 2-52 is of the same form of Eq. 2-45. Thus,

similar to the transformation of coordinates for the identification matrix, the constraint

equations can be written as

(2-53)

where the matrix  is constructed with the eigenvector

. (2-54)

For a 3D rigid element, the relation between the master and slave degrees of freedom is

, (2-55)

where  and  are the degrees of freedom for the master and slave nodes. The

constraint matrix is

, (2-56)

K′ QTKQ=

Q K ′

θ′i QTθi=

θi

φ′i Qφi=

um

us

Q um
=

um us

Q I
q

=
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where  is the identity matrix of appropriate dimensions, and 

. (2-57)

Boundary Conditions

Boundary conditions are imposed by eliminating the rows of the  matrix corresponding

to the boundary degree of freedom. Also, the components of the mode shape associated

with a boundary degree of freedom should be equal to zero. Considering the structure

shown in Fig. 2-4, boundary conditions are applied by eliminating the first row of the

identification matrix in Eq. 2-51 and by making  equal to zero. The resulting

identification matrix is

. (2-58)

Known Parameters

When information regarding specific structural members is available (e.g., by visual

inspection or any other means) this information can be incorporated into the methodology

to reduce the number of unknown parameters and improve the accuracy of the results. The

stiffness matrix can be written as

, (2-59)

I

q

1 0 0 0 dz dz–

0 1 0 dz– 0 dx

0 0 1 dy dx– 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

=

θi

α i 1,

θi
α i 2, I α i 2, I α i 3, I–

0 α i 3, I α i 2, I–
=

K Ku Kk+=
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where  is the stiffness matrix for the elements with unknown parameters and  is the

stiffness matrix of the elements with known parameters. Inserting Eq. 2-59 into Eq. 2-33

we obtain

. (2-60)

Rearranging this, and including Eq. 2-34 yields

. (2-61)

Including all the identified natural frequencies and mode shapes, the matrix  in Eq. 2-39

is

. (2-62)

Implementation

The methodology described in this section was implemented in Matlab as a part of a finite

element toolbox. Full 3D identification models with bar elements can be created with this

toolbox using additional elements such as rigid links and lumped masses. The toolbox was

programmed using object oriented techniques, allowing for the inclusion of new elements,

such as shells and bricks in a systematic way.

Ku Kk

Ku Kk+( )φi λ iMφi=

θir λ iM Kk–( )φi=

Γ

Γ

Mλ1 Kk–( )φ1

Mλ2 Kk–( )φ2

Mλm Km–( )φm

=

...
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2.3  Indices for damage identification

In the literature several indices exist to identify and locate damage in a structure. Although

these indices are not based on the identification of physical parameters of the structure,

they may be used to locate damage in the structure by identifying changes in the properties

of the structure. One advantage of these techniques is that a model of the structure is not

needed to identify damage in the structure. These indices are used in this dissertation to

compare the mode shapes of the structure in the sensitivity studies presented in Chapter 4.

2.3.1  Modal Assurance Criterion

Suppose that the mode shapes of a structure are identified from two tests  and . The

MAC is used to quantify the correlation between two mode shapes and is defined as

(2-63)

where  is the j-th coordinate of the i-th mode shape of measurement a,  is the j-th

coordinate of the i-th mode shape of measurement b, and n is the number of degrees of

freedom. Note that the mode shapes between measurements a and b should be the same

(e.g., first translational mode shape in the transverse direction).

If the two mode shapes are aligned, the MAC will equal one. If they are not linearly

correlated, the MAC factor will equal zero. Lower values of MAC for the same mode

shape between measurements a and b indicates that the structure has changed, possibly

a b

MAC

φa
i j, φb

i j,

j 1=

n

∑
 
 
 
 
 

2

φa
i j,( )2

i 1=

n

∑
 
 
 
 

φb
i j,( )2

i 1=

n

∑
 
 
 
 

-----------------------------------------------------------------=

φa
i j, φb

i j,



34
due to damage. Noise in the measurements, structural nonlinearities, and poor

identification of the mode shapes are sources of error for the MAC factors. Marwala and

Heyns [63] reported that MAC values should not be used for modes that are closely

spaced (e.g., such as those often found in flexible structures).

Damage in complex structures can cause the order of the modes to change. MAC factors

can also be used to identify shifts in the order of mode shapes between two measurements.

This is most evident in the case of cable-stayed bridges where the natural frequencies are

closely spaced and damage in the structure is likely to cause shifting in the mode shapes.

2.3.2  Mode Orthogonality

It is also possible to determine the orthogonality of two mode shapes if the mass of the

system is known or can be closely estimated. For mode shapes that are normalized with

respect to the mass, we know [23]

, (2-64)

where  is the identity matrix,  is the matrix of mode shapes and  is the mass matrix.

When comparing the same mode for two different measurements of the structure, Eq. 2-64

yields

, (2-65)

where  is the mode shape of the undamaged structure, and  is the mode shape of the

potentially damaged structure. If the structure has no damage the value of  is close to

one, indicating that the mode shape has not changed. 

ΦTMΦ I=

I Φ M

b φu
TMφd=

φu φd

b
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The property of modal orthogonality was found to be very effective to sort the mode

shapes of damaged structure to match the mode shapes of the undamaged structure. This

technique facilitates the comparison of damaged and undamaged structures to be

discussed in chapter 4. Here, a modification of Eq. 2-65 is used

. (2-66)

The vector  will have  elements, where  is the number of mode shapes in the matrix

. The element of  closest to one will identify the mode in  corresponding to .

2.4  Summary

The two step SHM methodology proposed in this dissertation was discussed in this

chapter. In this methodology, NExT obtains free response records from ambient vibration

tests, and ERA identifies the modal parameters from the free response data. The ERA was

originally developed to identify a state space representation of a system from frequency

response functions. The use of ERA with free response data is presented indicating that

the matrices A and C of the state space representation can be obtained from the free

response records. Modal parameters of the structures can be identified from these two

matrices.

In the proposed methodology the least squares solution of the eigenvalue problem is used

for the identification of structural parameters. The procedure for the implementation of

this methodology based on finite element meshes was presented in this chapter. This

includes the calculation of elemental identification matrices, coordinate transformation,

matrix assembly, and application of constraint equations and boundary conditions. This

procedure simplifies the implementation of the methodology to large structures.

b Φu
TMφi=

b n n

Φu
T b Φu

T φi



36
In the final portion of this chapter the description of the COMAC and the use of mode

orthogonality for mode sorting are presented. When damage occurs in a structure the

mode of vibration can switch places (i.e. the 9th mode becomes the 8th mode). These

methods are used in the following chapters to sort the modes of the structure, allowing the

comparison of modes of vibration between the damaged and undamaged states.
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Chapter 3 

Verification through Benchmark Implementation

During the past several years benchmark problems have become a very popular topic in

structural control and structural health monitoring. The main objective of a benchmark

problem is to permit direct comparison of different techniques, methodologies, sensors

and/or devices through a testbed problem widely available to the research community. In

1999 the American Society of Civil Engineering (ASCE) with the International

Association of Structural Control (IASC) formed a task group for the definition of the first

benchmark problem in structural health monitoring [52]. The group defined a simple

problem that could serve as testbed for the research community. In May of 2000 the first

session dedicated to the benchmark problem was held at the 14th Engineering Mechanics

Conference in Austin, Texas. At this conference several solutions for the benchmark

problem were presented including the work of Katafygiotis et al. [53], Dyke et al. [33],

Au et al. [1], Bernal and Gunes [8], and Corbin et al. [26]. Although the first benchmark

problem started as a simple exercise, the complexity of the problem has grown over time.

To date, a total of seven sessions at different conferences have been dedicated to the

different stages of the benchmark problem including two sessions at the ASME-ASCE

Joint Mechanics and Materials Conference in San Diego, California (June 27-29, 2001),

one session at the 3rd International Workshop on Structural Health Monitoring

(September 12-14 2001), one session at the 15th ASCE Engineering Mechanics

Conference in New York (June 2-5, 2002), one session at the IMAC XXI Conference in

Orlando, Florida (February 3-6, 2003), and a session at the 16th ASCE Engineering

Mechanics Conference in Seattle, Washington (July 16-18, 2003). 
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The methodology described in this dissertation has been applied to the different stages of

the benchmark problem, and this chapter presents a summary of that work. 

3.1  Benchmark Problem Description

The benchmark problem has been divided into a numerical phase and an experimental

phase. In the numerical phase, numerical models of a structure are used to compute

acceleration records. Damage in the structure is determined using these dynamic

responses. In the experimental phase the acceleration records are obtained from a physical

model. Different excitation cases and damage patterns are considered.

More information about the activities of the task group on structural health monitoring can

be found at the IASC-ASCE task group in SHM benchmark problems web page at 

<http://wusceel.cive.wustl.edu/asce.shm>.

3.1.1  Benchmark Structure

The benchmark structure selected is the 2 bay by 2 bay, 4-story steel structure scaled 1:3,

located at the Earthquake Engineering Laboratory at the University of British Columbia,

Canada (Figure 3-1). Although the numerical phase of the benchmark problem was based

on numerical models of the structure, this structure was selected by the task group for its

availability. The structure has a square plan of width 2.5m and has a height of 3.6m. The

beams and columns are steel, hot-rolled grade 300W sections with properties given in

Table 3-1 [52]. The floor masses varied through the different phases of the benchmark

problem.
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3.2  First Numerical Phase

Two numerical models were developed based on the benchmark structure. The first is a 12

DOF model that allows motion at each floor in the horizontal plane, and rotations with

respect to the vertical axis. The translational stiffness of this model was modeled as 106.6

MN-m in the strong direction of the structure and 67.9 MN-m in the weak direction. The

second model has a total of 120 DOF. The floor nodes of the second model are restrained

to have the same horizontal rotation and in-plane rotation (i.e., a rigid floor). Both models

TABLE 3-1. Properties of the Benchmark Structure

Property Columns Beam Braces
Section Name B100X9 S75X11 L25X25X3

Area ( )

Moment of Inertia in the strong dir. ( ) 0

Moment of Inertia in the weak dir. ( ) 0

St. Venant torsion constant ( ) 0

FIGURE 3-1. Benchmark Structure

a. Benchmark Structure b. Diagonal Members
North

m2 1.133 10 3–× 1.43 10 3–× 1.41 10 4–×

m4 1.97 10 6–× 1.22 10 6–×

m4 6.64 10 7–× 2.49 10 7–×

m4 8.01 10 9–× 3.82 10 9–×
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had a total mass of 3200 kg in the first floor, 2400 kg on the second and third floor, and

either 1600 kg or 1700 kg on the last floor depending on the case being simulated. The

natural frequencies of the two models without damage are shown in Table 3-2 as reported

by Johnson et al. [52]. The type of motion, either translation in the X or Y axis, or rotation

with respect to the Z axis, is also indicated.

These two models were used for the first and second numerical phases of the benchmark

problem. The goal of the first phase numerical study was to study the effect of noise in the

sensors and the effects of modeling errors in the SHM methodologies. In this phase

damage was induced in the structure by removing the braces in the structure or by

reducing the stiffness of beam column connections. Although removal of the braces

causes a severe reduction in the stiffness of the structure, the committee agreed that this

was a good starting point for the benchmark problem. The structure was excited with band

limited white noise with a 100Hz cutoff frequency. Four acceleration records per floor

were available, two in the X direction, and two in the Y direction, for a total of sixteen

accelerometers in the structure. A white noise with a root mean square (RMS) amplitude

of 10% of the RMS of the roof acceleration was added to the acceleration records to

simulate noise in the sensors.

Six simulation cases and 5 damage cases were studied in this phase. In all cases a 12 DOF

identification model was used. This approach produced some modeling errors when the

TABLE 3-2. Natural Frequencies for the Benchmark Models

12 DOF 120 DOF 12 DOF 120 DOF 12 DOF 120 DOF
9.41 Y 8.20 Y 32.07 X 24.24 X 48.68 X 39.73 X

11.79 X 8.53 X 38.85 Y 35.58 Y 60.60 X 55.16 X

16.53 13.95 45.17 39.05 68.64 60.75 

25.60 Y 22.54 Y 48.37 Y 39.73 X 85.51 79.46 

X: Translational mode along the X axis.
Y: Translational mode along the Y axis.

: Rotational mode about the Z axis.

θ θ θ θ θ θ
θ θ

θ
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acceleration records were calculated using the 120 DOF structural model. Case I was the

simplest. Here the 12 DOF structural model was used to calculate the acceleration in the

structure which was excited only in the weak direction. Case 2 was the same as case 1, but

used the 120 DOF structural model. Case 3 considered the excitation to act only at the roof

using the 12 DOF structure. Cases 4 and 5 considered the structure to have some

asymmetry. In this case the center of mass at the roof was different than the center of

inertia, and excitation was used in both directions. In case 4 the 12 DOF structural model

was used, and in case 5 the 120 DOF model was used. Case 6 was the same as case 5, but

a limited number of sensors was available.

Five damage patterns were studied in this phase. The first damage pattern assumed that all

the braces in the first floor of the structure were removed. All the braces were removed in

the first and third floor for the second damage pattern. For damage pattern three only one

brace was removed, in the first story. An additional brace was removed in the third story

to form damage pattern four. Finally, damage pattern five was the same as four with the

addition of a reduction in the stiffness of the connections between a column and a beam at

the first level.

This initial numerical phase of the benchmark problem has been extensively studied in

references [12, 15, 33] using the methods described earlier in this dissertation. It was

found that the methods are not sensitive to noise in the sensors. It was also found that

modeling errors have some effect on the methodology, but for this particular structure it

was not important. Additionally, an iterative procedure was developed for the case were

only a limited number of sensors (on the 2nd and 4th floors) were available. In the

referenced work a parameter study of the effect of the number of points used in the

calculation of the cross spectral density function was also presented.
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3.3  Second Numerical Phase

After the first numerical phase, the committee decided to test the physical model. In the

summer of 2000 a series of tests were performed at the Earthquake Engineering

Laboratory at the University of British Columbia [30, 32]. After analyzing the data

collected in the tests, members of the committee decided that before using experimental

data more studies based on numerical simulations were needed. The decision was made to

study some of the difficulties presented with the experimental data in a more controlled

environment. Thus, a second numerical phase of the SHM benchmark problem was

proposed. 

The focus of this second numerical phase was the investigation of the differences between

the model considered to be the “real structure” and the identification model. Although

modeling errors existed in the first phase between the 12 DOF identification structure and

the 120 DOF structural model (or “real structure”), the structure was too perfect. For

example, the center of mass coincided with the center of inertia, all of the beams had

exactly the same stiffness, and all of the floors had the same mass which was known by

the participants. Thus, for the second phase numerical problem, the committee decided to

use the 120 DOF structural model with the following modifications [6]: the mass of each

floor was multiplied by uniformly distributed random coefficient in the range [0.9, 1.1];

the position of the center of mass of each floor was multiplied by a uniformly distributed

random coefficient in the range [-0.25m, 0.25m]; the axial stiffness of the braces was

multiplied by a uniformly distributed random coefficient in the range [0.9, 1.1]; the

moment connection between the beams and the columns was modeled as a linear

rotational spring. The stiffness of these springs was selected to match the first natural

frequency of the benchmark structure obtained experimentally, and it is multiplied by a

uniformly distributed random coefficient in the interval [0.75, 1.25]. The uniformly

distributed random coefficients for each structural parameter were selected once and were

held constant throughout the different simulations.
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As in the first phase, the excitation was band-limited white noise applied to each floor in

the structure. Noise in the sensors was also considered by including a broadband random

signal with an amplitude equal to 10% of the RMS of the roof acceleration. 

Two damage scenarios were proposed in the benchmark problem [6], and the results of the

first case scenario are presented here [13]. Damage was simulated by decreasing the

stiffness of the braces in the structure. As in the first phase, the mass was held constant.

The first damage pattern considered a reduction of 50% in the stiffness in two of the

braces at the first floor (at locations 1 and 6, Fig. 3-2). These braces were located on

opposite sides of the structure in the strong (X) direction. A reduction of 25% in the same

members was considered for the second damage pattern. The third damage pattern

considers a 50% reduction in the stiffness of two braces at the first floor (at locations 1 and

6), and a 25% reduction of the same two braces at the third floor.

3.3.1  Identification Models

Two different identification models were employed for structural parameter identification.

The first identification model is a shear model with only 8 DOF (including displacement

in the X and Y directions for each floor) as shown in Fig. 3-3a Using this model one can

FIGURE 3-2. Element Numbers (Diagonals)
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identify the floor and direction affected by the damage, indicating its existence and partial

information on its location. The second model is shown in Fig. 3-3b. This model has 12

DOF (the 8 DOF model, plus rotations about the vertical axis) and can be used to obtain

better information on the location of the damage. Specifically, the damaged side can be

determined. Here, four elements are used at each floor. Each element is connected to a

central lumped mass using a rigid link.

Because many DOF are condensed out in the identification model, each element

represents contributions from a portion of the structural model (or “real” structure), rather

than being exclusively influenced by a single member of the physical structure, and the

identified damage cannot be attributed to a single member but, rather, to one or more of

several members in that particular portion of the structure. Figure 3-4 shows the members

from the experimental structure that influence a particular element of the identification

model. Note that some members of the physical structure affect only one corresponding

element of the identification model, while others contribute stiffness to several elements

of the model.
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FIGURE 3-3. Structural Identification Models

(a) 8 DOF Model (b) 12 DOF Model
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3.3.2  Benchmark Results

To identify the damaged floors, the damage SHM methodology is applied in each

direction separately using the 8 DOF model. Four acceleration records are available for

each floor, 2 in the X direction, and 2 in the Y direction. In each direction the translational

accelerations were calculated as

, and (3-1)

where  and  are vectors of acceleration obtained for the X direction on opposite

sides of the structure, and  and  are the acceleration records obtained for opposite

sides in the Y direction. 

FIGURE 3-4.  Association Between Members of the Structure and the 
Identification Model
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For calculation of the cross correlation functions, a boxcar window of 1024 points with

75% overlapping was used. The acceleration of the roof of the structure was selected as

the reference channel for calculating the cross spectral density functions. This channel was

selected because it is far from any of the nodes of the mode shapes and it will contain

information of the four natural frequencies about the structure. Figure 3-5 shows a typical

cross spectral density function and the corresponding cross correlation function from the

data. The four modes of the structure can be easily identified as peaks in this plot.

A Hankel matrix width 150 rows and 30 columns using a total of 66 time samples of the

cross correlation function was used for implementation of the ERA. The dotted portion of

the cross correlation function in Figure 3-5b corresponds to the data used to form the

Hankel matrix. Figure 3-6 shows a typical plot of the singular values of the Hankel matrix.

A drop is observed after the 8th singular value indicating that the structure has 4 modes of

vibration (8 poles).

The resulting natural frequencies are shown in Table 3-3. Figure 3-7 shows the identified

mode shapes for the healthy structure in the strong (X) direction. The natural frequencies
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TABLE 3-3. Identified Natural Frequencies

Case

X - direction Y - direction

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
Healthy  8.78  25.34  40.76  55.50  8.30  23.16  36.12  46.27 
Damage 1  8.35  24.52  40.34  55.40  8.30  23.16  36.12  46.26 
Damage 2  8.71  24.93  40.53  55.45  8.30  23.16  36.12  46.27 
Damage 3  8.31  24.17  40.31  54.52  8.30  23.16  36.11  46.26 
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in the weak (Y) direction of the structure did not change during the various damage cases,

indicating no damage occurred which affected the dynamics in this direction. However,

the identified natural frequencies in the strong (X) direction changed for each damage

case. 

For each damage case the loss of stiffness at each floor, as compared to the healthy

structure, was calculated and is shown in Table 3-4. Here the loss of stiffness is defined as

. (3-2)

It is clear from these results that damage occurs on the first floor in the strong direction in

the first and second damage cases, and on the first and second floor in the third damage

case. The loss in identified stiffness in the first floor for the second damage case is

approximately half the loss of stiffness in the second and third cases, consistent with the

damage induced as described in the benchmark problem statement. No damage is found in

the Y direction. Relatively negligible stiffness variations are observed in the undamaged

floors, due to noise included in the numerical simulations and modeling errors (0.29%

maximum).

Further examination of the strong direction of the structure to more precisely locate the

damage was performed using the 12 DOF model. This more refined model allowed for

determination of the side(s) of the structure that were damaged. For this analysis the

TABLE 3-4. Stiffness Reduction (8 DOF model)

Case

X - direction Y - direction

(%) (%) (%) (%) (%) (%) (%) (%)
Damage 1  13.29  -0.33  0.17  -0.06  0.18  -0.18  0.04  -0.06
Damage 2  6.44  0.11  -0.11  0.16  0.10  -0.08  0.02  -0.03
Damage 3  12.75  -0.34  7.11  0.02  0.29  -0.27  0.07  -0.11

∆k 100
kundamaged kdamaged–

kundamaged
--------------------------------------------------×=

∆k1 ∆k2 ∆k3 ∆k4 ∆k1 ∆k2 ∆k3 ∆k4
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acceleration records were not averaged using Eq. 3-1. Table 3-5 provides the identified

loss in stiffness in the left and right frames. It was found that the stiffness loss is similar in

both frames, which agrees with the benchmark problem statement. For the first case a loss

of stiffness of 13.24% and 13.66% was found at the first floor. These values agree with the

13.29% stiffness loss found with the 8 DOF model. Similar results are observed in the

other damage cases.

In the case of limited sensors (2nd and 4th floor only), the  vector cannot be completely

defined in the modal identification step. In this case the following iterative procedure can

be used: i) assume a vector of stiffnesses ; ii) using  and the approximated mass

matrix, calculate the theoretical natural frequencies and mode shapes; iii) fix the known

parts of the mode shapes using the data from NExT and ERA; iv) calculate a new stiffness

 using the least squares solution of the eigenvalue problem (see chapter 2) with the

identified natural frequencies and the fixed mode shapes; v) obtain ; and,

vi) calculate an updated  and iterate (go to step ii). The solution is

obtained when  reaches an appropriate convergence level defined by the user. Figure

3-8 shows a flow diagram of the iterative procedure. Although this methodology is not

guaranteed to converge, it was found effective in the cases that were studied.

The natural frequencies obtained were approximately equal to those obtained with the full

set of sensors. The maximum variation of these values with respect to the values shown in

TABLE 3-5. Stiffness Reduction (12 DOF model - X direction)

Case
(%) (%) (%) (%) (%) (%) (%) (%)

Damage 1  13.24  13.66  0.29  -0.95  1.02  -0.76  -0.13  0.02
Damage 2  6.38  6.67  0.45  -0.23  0.41  -0.68  0.13  0.20
Damage 3  12.64  13.05  -0.08  -0.56  7.95  6.16  0.10  -0.02
L = Left side frame; R = Right side frame

∆k1L ∆k1R ∆k2L ∆k2R ∆k3L ∆k3R ∆k4L ∆k4R

φi

ki ki

ks

∆k ks ki–=

ki 1+ ki ∆k+=

∆k
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Table 3-3 is 0.65%. Table 3-6 shows the identified stiffness loss using the 8 DOF

identification model. The lack of complete mode shapes increased the errors in the

stiffnesses obtained at the undamaged floors (from 0.34% to 1.19%). Nevertheless, the

method accurately identified the damage in each of the 3 damage cases. Table 3-7 shows

the stiffness loss in the strong (X) direction for the 12 DOF model. The results obtained

with this model agree with the results obtained with the 8 DOF model. With this

identification model the errors shown in the undamaged elements also increased,

especially in case 3 where the identified loss in stiffness in the second floor elements

TABLE 3-6. Stiffness Reduction (8 DOF model, limited sensors)

Case

X - direction Y - direction

(%) (%) (%) (%) (%) (%) (%) (%)
Damage 1  15.03  -0.98  1.19  -0.40  -0.19  0.03  -0.02  0.06
Damage 2  7.28  -0.52  0.78  -0.15  -0.06  0.01  -0.01  0.03
Damage 3  8.46  0.15  9.07  0.76  -0.35  0.11  -0.09  0.09

TABLE 3-7. Stiffness Reduction (12 DOF model - X direction limited sensors)

Case
(%) (%) (%) (%) (%) (%) (%) (%)

Damage 1  8.90  9.80  1.14  1.64  0.64  -1.16  0.64  0.59
Damage 2  3.94  5.08  0.70  0.69  0.37  -0.46  0.12  0.42
Damage 3  5.94  6.81  2.83  3.37  5.51  4.07  1.40  1.19
L = Left side frame; R = Right side frame

∆k 0?→

FIGURE 3-8. Iterative Procedure
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∆k1 ∆k2 ∆k3 ∆k4 ∆k1 ∆k2 ∆k3 ∆k4

∆k1L ∆k1R ∆k2L ∆k2R ∆k3L ∆k3R ∆k4L ∆k4R



51
might be interpreted as false damage. However, simultaneously using the information

obtained using both identification models, one could determine all three damage cases.

3.3.3  Blind Test

A blind case, called “phase IIe” was created in the second phase of the numerical

benchmark problem including two blind damage patterns. Dr. Lam at the Hong Kong

University of Science and Technology selected damage patterns which were unknown to

the benchmark participants [59]. The results obtained by the different groups participating

in the blind case, as well as the correct solution, were presented at the XXI IMAC

Conference in Kissimmee, Florida (February 3-6, 2003). 

Table 3-8 shows the identified natural frequencies for the blind cases. No change is

present in the Y direction of blind pattern 1, indicating that this direction is free of damage.

Damage was identified in the second floor, X direction for blind pattern 1 using the 8 DOF

structure. The identification procedure indicated damage in the first floor in the X

direction, and the third and fourth floor in the Y direction for blind pattern 2. As expected

the methodology did not identify any damage for the Y direction of blind pattern 1.  

TABLE 3-8. Identified Natural Frequencies (Blind Case)

Case

X - direction Y - direction

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
Healthy 8.78 25.32 40.85 55.49 8.37 23.19 36.06 46.12
Blind 1 8.60 25.32 40.46 55.19 8.37 23.19 36.06 46.12
Blind 2 8.67 25.14 40.76 55.46 8.24 22.54 35.20 45.12

TABLE 3-9. Stiffness Reduction (8 DOF Model - Blind Case)

Case

X - direction Y - direction

(%) (%) (%) (%) (%) (%) (%) (%)
Blind 1 0.05 3.51 0.09 0.47 -0.01 0.00 -0.00 -0.00
Blind 2 2.96 -0.22 0.12 -0.02 0.33 -1.70 6.78 8.82

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

∆k1 ∆k2 ∆k3 ∆k4 ∆k1 ∆k2 ∆k3 ∆k4
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The 12 DOF identification model is used to determine the side where damage occurred.

Table 3-10 shows the results for the X direction. Here a loss of stiffness of 8.92% was

identified on the left side of the second floor for blind pattern 1. The left side of the first

floor presented a loss of stiffness of 5.58% for blind pattern 2. Table 3-11 shows the

identification of the different frames for the Y direction. A loss of 12.27% in the stiffness

of the left side of the third floor and 19.53% was identified in blind pattern 2. Note that in

this table the left side of the first floor presented a loss of 5.49%, but this was ruled out as

a false positive because the 8 DOF model did not present any damage in the first floor.

This demonstrates the main advantage of using different identification models for the

same structure. This work was presented at the IMAC conference [13], and the results

agreed with the numerical solution of the problem [59].

3.4  Experimental Phase

Following the studies done with the numerical models, the committee decided to again test

the physical structure. As in the numerical phases, damage was simulated by removing

bracing within the structure or loosening bolts connecting beams to columns. Three

sources of excitation were considered: ambient vibrations, impact hammer tests, and

electrodynamic shaker tests. Accelerometers placed throughout the structure provided

TABLE 3-10. Stiffness Reduction (12 DOF Model - X Direction - Blind Case)

Case
(%) (%) (%) (%) (%) (%) (%) (%)

Blind 1 -0.03 0.28 8.92 -2.14 0.50 0.52 0.70 0.80
Blind 2 5.58 1.97 -0.01 -1.48 0.01 0.47 -0.16 -1.32
L = Left side frame; R = Right side frame

TABLE 3-11. Stiffness Reduction (12 DOF Model - Y Direction - Blind Case)

Case
(%) (%) (%) (%) (%) (%) (%) (%)

Blind 1 0.00 0.14 0.07 -0.12 -0.05 0.09 0.06 0.04
Blind 2 5.49 -4.69 -2.10 0.49 12.27 1.74 -1.59 19.53
L = Left side frame; R = Right side frame

∆k1L ∆k1R ∆k2L ∆k2R ∆k3L ∆k3R ∆k4L ∆k4R

∆k1L ∆k1R ∆k2L ∆k2R ∆k3L ∆k3R ∆k4L ∆k4R
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measurements of the structural responses. The data recorded during the testing of the UBC

structure, a video of the experiment, and a complete description of the experimental setup

are available on the ASCE Structural Health Monitoring Task Group’s web page [44].

3.4.1  Experimental Setup

The structure was positioned so that the strong side is parallel to the North-South direction

as shown in Fig. 3-1. In each bay the bracing system consists of two 12.7mm (0.5 in)

diameter threaded steel rods placed in parallel along the diagonal (see Fig. 3-1). To make

the mass distribution reasonably realistic, one floor slab is placed in each bay per floor:

four 1000 kg slabs at each of the first, second and third levels, four 750 kg slabs on the

fourth floor. On each floor two of the masses were placed off-center to increase the degree

of coupling between the translational motions of the structure.

Ambient vibration and two types of forced excitations are considered in the tests. Ambient

vibration includes excitations present from the environment due to wind, pedestrians, and

traffic. The forced excitation cases consider both impact hammer tests, and broadband

excitations provided by an electrodynamic shaker. 

The overall mass of the body of the shaker is 81.6 kg, The moving mass of the shaker

includes the armature (0.426 kg, included in the 81.6 kg) and the supplemental masses

attached to the end of the shaker (2.95 kg, not included in the 81.6 kg). The shaker is

placed on the top floor of the structure along the diagonal in the center of the SW bay. The

command to the shaker is a band-limited white noise with components between 5–50 Hz.

Additionally, in a few configurations, a sine sweep input was employed. To record the

shaker force excitation, one accelerometer was placed on the shaker to measure the

acceleration of the moving mass.
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The impact hammer has a force transducer, and this measurement was recorded during the

hammer tests. The maximum force that can be provided with this hammer is 5000lbf, and

a medium/soft tip was used on the hammer head during the tests. This tip was selected

because it excites the frequency of the structure. In each test a series of 3–5 hammer hits

were recorded. Two impact locations were selected including a hit on the south face in the

north direction, and a hit on the east face in the west direction (see Fig. 3-1). Both impacts

were placed at the first floor of the structure in the southeast corner.

Fifteen accelerometers were placed throughout the frame to measure the responses of the

test structure and on the base of the frame. FBA sensors were placed along the east and

west frames of the structure to measure the motion in the north-south direction (along the

strong axis). EPI sensors were placed near the center column of the frame, and oriented to

measure the east-west motion of the structure (along the weak axis).

A 16-channel DasyLab acquisition system was used to record the structural responses.

Anti-aliasing filters were used in the shaker tests and the ambient tests. In these two types

of tests, the data was sampled at 250 Hz. In the hammer tests, a sampling rate of 1000 Hz

was used, the anti-aliasing filters were turned off on the channel recording the impact

force.

During the shaker testing, data acquisition was started several seconds after the excitation

was turned on to ensure that the system had reached a steady state condition. In the

hammer tests, the data acquisition system was started prior to the first impact. Each test

consisted of recording a series of three to five hits. Several tests were also conducted by

placing extra accelerometers on the base to which the structure is fixed.
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3.4.2  Damage Patterns

A series of tests were conducted on the structure with various damage scenarios. In the

tests, damage is simulated by removing braces in the structure or by loosening bolts at

beam-column connections. Table 3-13 shows the damage patterns studied in this

dissertation. A complete description of the tests realized can be found in reference [31] or

at the Task Group on SHM web page (http://wusceel.cive.wustl.edu/asce.shm).

TABLE 3-12. Characteristics of the Instrumentation

Sensor Model

Sensor Characteristics 

Frequency
Range

Conditioner
Antialiasing
Filter Cutoff

Sensitivity

FBA DC–50 Hz 50 Hz 5 Volts/g
EPI Sensor DC–200 Hz 50 Hz 5 Volts/g

IC Sensors (on Shaker) DC–1 kHz 50 Hz 0.222 V/g

Dytran 5803A Impact 
Hammer (force trans-
ducer)

DC–1 kHz

(med-soft tip)
– 1.12 mV/lbf

TABLE 3-13. Description of Damage Patterns

Pattern Description
1 Undamaged structure. All braces present.
2 All braces on the east side are removed.
3 Braces on the south half of the east side are removed.

4
Braces on the first and fourth floor of the south half of the east side are 
removed.

5 Braces on the first floor of the south half of the east side are removed.
6 Braces on the second floor of the north side are removed. 
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3.4.3  Benchmark Results

To improve the accuracy of the NExT and ERA techniques, different sets of data are

employed to obtain an averaged and more representative model of the structure that is

being identified. When dealing with hammer tests, for instance, results obtained from

applying the ERA to all impacts can be used to obtain a more reliable average. In the case

of ambient vibration records, several channels can be used as reference, obtaining, for

each, a similar but distinct set of free response data and consequently different modal

parameters. The three acceleration channels on the roof were each used as reference

channels. Because two of those channels measure north-south accelerations and only one

measures east-west accelerations, different weights were applied to the modal properties

identified [40]. The averaged modal properties are calculated as

 and , (3-3)

where  and  are the averaged i-th natural frequency and mode shape of the system,

and  and  are the ones identified with the  reference channel. 

To identify repeated mode shapes and readily reject the incorrect pair, the modal

assurance criteria (MAC) was computed. The same parameters are used when averaging

natural frequencies and mode shapes from different sets of data input to NExT and ERA.

In this case, high correlation between two modes indicates that they are associated with

the same frequency and should be averaged. In general, values between 0.9 and 1 indicate

high correlation, and values between 0 and 0.1 indicate low correlation. 

Tables 3-14 and 3-15 contain the identified natural frequencies for ambient vibration and

hammer tests respectively. Note that compatible natural frequencies were detected with

both ambient vibration and hammer tests for all damage scenarios. Note the increase
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obtained in some of the frequencies after damaged is introduced to the structure. For

instance, when all braces of the east side were removed (damage case 2), the identified

frequency associated with the first mode increases by 3% and 6% for ambient vibration

records and hammer tests, respectively. Because this frequency is associated with east-

west motion of the structure, and the change of mass when removing the braces constitutes

less than 1% of the total mass, no significant changes in this frequency were expected. The

difference can be attributed, in part, to noise in sensors or nonlinearities of the structure.

However, when the results have been obtained from several averages and the length of the

data records are as long as those used for this study, it becomes clear that other factors

such as experimental errors, variability of the disturbance, and changing ambient

conditions can also be associated with this phenomenon. A more in depth analysis in this

matter would be necessary to determine the causes.   

TABLE 3-14. Identified Natural Frequencies Using Ambient Vibration

Damage
Pattern

Mode 1
E-W motion

Mode 2
N-S motion

Mode 3
Torsion

Mode 4
E-W motion

Mode 5
N-S motion

1 7.50 7.77 14.48 19.88 21.01
2 7.73 5.66 12.74 20.13 15.02
3 7.65 6.65 13.48 20.02 18.91
4 7.60 7.35 13.97 20.12 19.71
5 7.56 7.45 14.03 19.89 20.63
6 5.96 7.79 13.19 19.87 20.99

TABLE 3-15. Identified Natural Frequencies Using Hammer Tests

Damage
Pattern

Mode 1
E-W 

motion

Mode 2
N-S motion

Mode 3
Torsion

Mode 4
E-W 

motion

Mode 5
N-S motion

Mode 6
Torsion

1 7.47 7.64 14.45 19.90 20.87 22.52
2 7.94 5.11 12.69 19.97 14.91 22.14
3 7.56 6.50 13.39 19.90 18.76 22.22
4 7.53 7.25 13.94 20.02 19.65 22.41
5 7.53 7.37 13.99 19.83 20.46 22.56
6 -- 7.67 13.06 19.80 20.79 22.34
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Note that, for each damage case, six natural frequencies were detected when using the data

acquired with hammer tests and only five were detected from ambient vibration data. In

general, this difference is an indication of the bandwidth of the ambient vibrations exciting

the structure and the small amplitudes in the motion of the structure. 

Note also that the frequency associated with the first mode of vibration of the sixth

damage case could not be detected with the data acquired from the hammer impacts. The

hammer impacts were all located in the southeast corner of the first floor (between first

and second stories) in both south-north and east-west directions. According to the mode

shape detected for this damage case using ambient vibration, the hammer hit was at the

location corresponding to the lowest amplitude of that particular mode shape (due to some

torsion effects generated by the removal of some braces of the second floor). As a result,

this mode was not excited significantly by the hammer. Although five other modes were

detected for this damage case, important information is missing and the chances of

successfully detecting the damaged members decreased. 

Considerable differences are consistently observed between the mode shapes detected

with ambient vibration and hammer tests (see undamaged cases in Fig. 3-9). Because a

large amount of information was analyzed and averages from different sets of data were

obtained, this phenomenon cannot be attributed to noise in the sensors. Although the

sources are not precisely known, it is likely that these changes are due to a nonlinearity in

the structure (friction between elements perhaps) that affects the behavior of the building

mainly when the amplitude of the displacements is small (i.e. ambient vibration). 

Although the inconsistencies in the mode shapes identified with ambient vibration and

hammer tests were important for most damage cases, the greatest impact on the stiffness

identification process was noticed in the undamaged case. Additionally, notice in Fig. 3-9

that elements of the second floor are most affected by this phenomenon. As a result, when

detecting elemental stiffness values of the different damage cases, elements opposing the
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north-south displacement of the second floor had higher values than those detected on the

undamaged case.

The 12 DOF identification model was used in this exercise [40]. The masses of the

identification model were changed to obtain a better representation of the physical model.

Figure 3-10 displays the members of the identification model that are associated with the

members of the experimental structure in which damage was induced. Tables 3-16 and 3-

17 contain the identified elemental stiffness of all 16 members of the identification model

as a percentage of their initial stiffness values (undamaged case) for ambient vibration and

hammer tests respectively. Herein, members with less than 10% stiffness loss are

considered to be healthy. Bolded values indicate members whose stiffnesses were

expected to be reduced. Note that with the exception of member 7 of the sixth damage
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pattern for ambient vibration, all expected reductions are detected. As mentioned before,

especially in the undamaged case, the structure behaves differently for small amplitudes,

greatly decreasing the identified elemental stiffness values of members 5 and 7. As a

result, a gain of stiffness for these members was detected for all damage scenarios.  

In a few cases, losses in the stiffness values were detected when they were not present

(false positives), the most critical case being element 5 of damage pattern 6 of the hammer

tests, whose identified stiffness had a value below zero. This false positive is most likely

due to the lack of vital information regarding this damage scenario (the first natural

FIGURE 3-10. Members Expected to be Damaged
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frequency is missing). In all other cases the loss in stiffness values ranged between 10 and

23%, and damage can be arguable for the types of damage induced in this experimental

structure. 

Although, for purposes of damage detection, it is preferable to obtain false positives than

false negatives (i.e., detect all damaged members and probably a few more, rather than not

detecting some damage), it is desirable for any SHM technique to be accurate enough to

detect only the damaged components. However, because damage in this particular

structure was induced by removing some of the elements, it is possible that the

connections had also been influenced by the changes of the structure, slightly reducing the

effective stiffness of the adjacent members. As a result, false positives may be obtained.

TABLE 3-16. Stiffness Reduction Using Ambient Vibration

Element 
number

Pattern 1
(%)

Pattern 2
(%)

Pattern 3
(%)

Pattern 4
(%)

Pattern 5
(%)

Pattern 6
(%)

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 66 23 32 33 0
5 0 0 0 0 0 0

6 0 0 2 22a 7 2

7 0 0 0 0 0 0b

8 0 36 32 10 1 5
9 0 0 12 2 4 0

10 0 0 0 20a 2 0

11 0 4 4 1 0 0
12 0 77 42 0 0 0
13 0 0 4 0 0 0
14 0 0 0 0 0 0
15 0 4 0 0 0 5
16 0 88 38 41 0 4

a. False positive (damage detected when not present)

b. False negative (stiffness reduction not detected)
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As mentioned before, several identification models can be employed to detect damage and

improve the performance of the damage detection technique.

3.5  Summary

A review of the work accomplishments when applying the proposed SHM methodology to

the IASC-ASCE SHM benchmark problem during the last four years has been presented

in this section. The first numerical phase of this problem was studied extensively in [12]

using an early version of the methodology presented in this dissertation. Here it was found

that the methodology was relatively insensitive to noise in the sensors and that the

modeling errors between a 12 DOF identification model and the 120 structural model

were not significant for the benchmark structure.

TABLE 3-17. Stiffness Reduction Using Hammer Tests

Element 
number

Pattern 1
%

Pattern 2
%

Pattern 3
%

Pattern 4
%

Pattern 5
%

Pattern 6
%

1 0 0 0 0 0 0 
2 0 0 0 0 0 3
3 0 0 0 0 0 0
4 0 83 38 39 42 5
5 0 0 0 0 0 0a

6 0 0 0 0 0 0
7 0 0 0 0 0 41
8 0 79 37 2 2 0
9 0 23a 0 8 0 8
10 0 0 0 10 2 0
11 0 0 0 0 0 0
12 0 71 37 0 0 0
13 0 16a 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 79 32 35 0 0

a. False positive (damage detected when not present)
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The effect of uncertainty in the information known by the researchers was studied in the

second analytical phase of the benchmark problem. Here, the 120 DOF structural model

was used to produce the acceleration measurements for the identification. The mass and

stiffness values of the structural model deviated from their nominal value by a random

number. The participants of the benchmark problem did not have access to this random

number increasing the uncertainties in the model. The SHM based on NExT, ERA and the

least squares solution of the eigenvalue problem performed well in this second phase

indicating that the methodology is effective even though the mass matrix used in the

identification process deviates from the true value. The methodology was also tested on

two blind cases of this second numerical phase. In this case the participants did not have

any knowledge of the damage in the structure. By using two different identification

models, and comparing the information of these two models the methodology was used to

correctly identify the existence, location and amount of damage in the structure.

In the last part of this chapter the experimental benchmark problem was discussed. Here

acceleration records of the real structure were used for the damage identification. In this

phase different excitation cases were considered, including ambient excitation and

hammer testing. The results demonstrated the potential of using ambient excitations for

the identification of modal parameters. Five natural frequencies and mode shapes were

identified using ambient vibration. These agreed with the modal parameters obtained

using hammer testing. In the identification of the change of stiffness some false positives

cases were identified. These results were probably due to leakage in the stiffness reduction

in neighbor members.

In summary, it has been shown that the presented methodology has the potential to work

in real case scenarios. The IASC-ASCE SHM benchmark problem has been an excellent

tool for the development and implementation of this methodology and future benchmark

studies should be encouraged to continue the evolution of the SHM methodology and to

develop a better understanding of the difficulties faced in SHM.
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Chapter 4 

Sensitivity of Structural Behavior to Damage in 
Flexible Structures

This chapter examines the effects of structural damage on the overall behavior of a cable-

stayed bridge deck. Sensitivity of the static displacement and the dynamic properties of

the structure are studied when different levels of damage are imposed. The first section of

this chapter discusses the modeling of cable-stayed bridges. Next, the Bill Emerson

Memorial Bridge (Cape Girardeau, Missouri, U.S.A.) is discussed followed by a

description of the finite element model of the bridge. Finally, a parametric study is

performed to determine the sensitivity of the static displacement, natural frequencies and

mode shapes to damage in the deck of the structure.

4.1  Modeling of Cable-Stayed Bridges

Cable-stayed bridges are the best solution for medium to long span bridges due to their

aesthetic appearance and their economy in construction. In addition, advances in the

materials used in their construction and the methodologies used in their analysis are

making cable-stayed bridges with main spans ranging from 200m to 500m very popular.

In these structures cables are used to suspend the deck of the bridge reducing the moments

applied to the deck girders, and thus reducing the size of the members needed in the deck.

The static and dynamic loads travel through the cables to the piers, creating enormous

compression loads. The deck is also subject to compression loads due to the inclination of

the cables. Even though the materials in cable-stayed bridges remain within the linear
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range, nonlinearities due to the sag in the cables, beam-column effects due to large

compressive loads, and changes in the geometry of the structure should be considered in

modeling this class of structures.

The following two sections will describe the methodology followed to obtain a nonlinear

static model of a cable-stayed bridge. This nonlinear model is obtained using dead loads

and pre-tension in the cables.

4.1.1  Nonlinear Static Analysis

Cable-stayed bridges behave nonlinearly under dead loads even when the material is in the

linear range. This nonlinearities are due to three major factors: i) nonlinear behavior in the

cables; ii) beam-column effects due to large compression forces; and iii) large

displacements producing changes in geometry [57, 65, 85].

Tension in the Cables

The first source of nonlinearitys in cable-stayed bridges is the nonlinear behavior of the

cables. When the axial load in the cables is small, a small apparent tangent stiffness is

obtained due to the sag produced by the cable’s self-weight. When the tension is increased

the sag in the cable is reduced, and the apparent stiffness of the cable increases, as shown

in the strain-stress curve in Fig. 4-1. In modeling the cables, the catenary shape and its

variation with the axial force in the cable are modeled using an equivalent elastic modulus

[35]. The cable element has a modified modulus of elasticity, , given by

(4-1)
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where  is area of the cross-section,  is the tension in the cable,  is its weight per

unit length,  is the projected length in the horizontal plane, and  is the modulus of

elasticity of the material. The cable stiffness contribution to the global stiffness matrix is

only applied when the cable is under tension and is omitted otherwise. 

The value of  obtained in Eq. 4-1 is the tangential stiffness of the cable (See Fig. 4-1).

When the cable changes from an initial tension  to a final tension , the secant stiffness

of the cable is given by the equation

(4-2)

Second Order Effects

Axial forces and bending moments are often treated separately in a finite element model.

In the case of cable-stayed bridges, second order effects need to be considered due to the

high compression forces in the deck and the towers. The bending stiffness of a member
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will decrease when subjected to compression loads. Similarly the axial stiffness of the

member is affected by the bending moments and this effect must be considered when the

stiffness matrix is formed.

Stability functions can be used to model the reduction or increase in the stiffness due to

large internal loads. The elemental stiffness matrix for the 3D beam element shown in Fig.

4-2 is [65]

(4-3)
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where  is Young’s modulus;  is the shear modulus;  is the cross sectional area of the

beam;  is the length of the beam;  and  are the moment of inertia of the cross-section

with respect to the  and  axes, respectively; and  is the polar moment of inertia of the

cross-section area. The stability functions  to  for an element in tension are [65]

; (4-4)

; (4-5)

; (4-6)

; (4-7)

where

, (4-8)

and

. (4-9)

The stability functions  to  are calculated similarly by changing  to . The

stability function  for a member in tension is calculated as
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(4-10)

where

, (4-11)

. (4-12)

 and  are the moments at nodes 1 and 2 with respect to the  axis, and  and

 are the moments at nodes 1 and 2 with respect to the  axis.

For a member in compression the stability functions  to  are

; (4-13)

; (4-14)

; (4-15)

, (4-16)
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where  is defined by Eq. 4-9 and

. (4-17)

The stability functions  to  for a member in compression are obtained replacing 

by . For a member in compression  is defined as

, (4-18)

where

, (4-19)

. (4-20)

For small values of axial force the stability functions  to  are numerically unstable

[57]. To avoid this instability these values are set to one when . Figure

4-3 shows the variation of  to  with respect to . Positive values of  are for

members under tension and negative values are for members under compression.
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Geometry Change

The final source of nonlinearitys in cable-stayed bridges are due to changes in the

geometry of the structure. Linear analysis assumes that the geometry of the structure is the

same before and after the application of static loads. Cable-stayed bridges can exhibit

large displacements due to static loads, changing the geometry of the elements and

affecting the stiffness of the structure.

4.1.2  Solution of the Nonlinear Problem

Several approaches can be taken to solve nonlinear static problems [25, 38]. A very basic

method is the incremental approach, which consists of applying the load in incremental

steps as shown in Fig. 4-4a. For every step the tangent stiffness matrix of the structure is

calculated, and a new portion of the dead load is applied to the structure. This method is

simple, and convergence to a solution is guaranteed. However, significant errors are

obtained if the step sizes are chosen incorrectly. For example, consider the load

displacement curve shown in Fig. 4-4a. In this figure the actual load-displacement curve is

shown as a thick line, and the displacements for each load increment are shown by the
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arrows. By dividing the load in four the method will show that the final displacement D’ is

the solution, where the actual solution is the displacement D. To obtain an accurate

solution for complex nonlinear problems a large number of steps might be needed,

increasing the computational resources needed to solve the problem. Another

disadvantage of this method is the lack of an indication of the accuracy of the solution.

One of the most commonly used methods to solve nonlinear problems is the Newton-

Raphson method. The method starts by calculating the tangent stiffness matrix of the

structure and obtaining the corresponding displacement for the load P (See point 1 in Fig.

4-4b). Then, a new stiffness matrix is calculated with the deformed structure. Point 2 is

obtained by calculating the external forces needed to obtain the displacement of point 1.

The error in the load is obtained by subtracting P from the forces at point 2. A new

iteration is performed by applying a new force to the structure equal to the force error

using the new tangent stiffness. The process is repeated until the load error is small. Figure

4-5 shows a flow diagram of the methodology.

P

FIGURE 4-4. Methods to Solve Nonlinear Problems
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Unlike the incremental approach, with the Newton-Raphson method it is possible to

measure the error at the end of every iteration, and decrease the error in every iteration. A

drawback of the Newton-Raphson method is that convergence is not guaranteed in some

problems. For instance, Fig. 4-6 shows a case in which the method will not converge to a

solution and it will “jump” back and forth between points 1 and 2 of the force

displacement curve. To improve the convergence of the method, several variations have

been proposed. One of these solutions is a hybrid approach between the incremental

approach and the Newton-Raphson method. In this case the load is divided and applied in

several steps similar to the incremental approach. The Newton-Raphson method is used to

reach the solution for each step. Another variation is to use a portion of the load error in

every step. This will increase the number of iterations needed to reach a solution but will

increase the convergence of the algorithm.

FIGURE 4-5. Flow Diagram for the Newton-Raphson Method
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The nonlinear static procedure was included in the FEM toolbox developed for this

dissertation. The variation of the Newton-Raphson method with the incremental approach

was selected for implementation. In addition, a fraction of the error load can be applied in

every iteration.

4.2  Bill Emerson Memorial Bridge Model

Previously, the sources of nonlinearities in cable-stayed bridges and methods to solve the

nonlinear static problem were presented. In this section a description of the Bill Emerson

Memorial Bridge is discussed. This bridge was selected to perform the sensitivity studies

to damage in the deck discussed at the end of this chapter. Following this discussion the

formulation of a static nonlinear finite element model is presented based on the previous

section.

4.2.1  Bridge Description

The cable-stayed bridge used for this numerical study is the Bill Emerson Memorial

Bridge spanning the Mississippi River (on Missouri 74–Illinois 146) near Cape Girardeau,

Missouri, designed by the HNTB Corporation [41]. The bridge is currently under

construction and is to be completed in fall 2003 with a total cost of $100 million U.S.
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FIGURE 4-6. Convergence Problems for the Newton-Raphson Method
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dollars. Instrumentation is being installed on the Emerson Bridge and surrounding soil

during the construction process to evaluate the structural behavior and seismic risk [18].

Seismic considerations were strongly considered in the design of this bridge due to its

location (in the New Madrid seismic zone) and its critical role as a principal crossing of

the Mississippi River. In early stages of the design process, the seismic loading cases

governed. Earthquake load combinations in accordance with American Association of

State Highway and Transportation Officials (AASHTO) Division I-A specifications were

used in the design. Various designs were considered, including full longitudinal restraint

at the tower piers, no longitudinal restraint, and passive isolation. When temperature

effects were considered, it was found that fully restraining the deck in the longitudinal

direction would result in unacceptably large stresses. Based on examination of the various

designs, it was determined that incorporating force transfer devices would provide the

most efficient solution. 

Sixteen 6.67 MN (1,500 kip) shock transmission devices are employed in the connection

between the tower and the deck. These devices are installed in the longitudinal direction to

allow for expansion of the deck due to temperature changes. Under dynamic loads these

FIGURE 4-7. Construction of the Emerson Bridge

Source:<http://www.modot.state.mo.us/local/d10/emersonbridge/Emerson-index.html>
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devices are extremely stiff and are assumed to behave as rigid links. Additionally, in the

transverse direction earthquake restrainers are employed at the connections between the

tower and the deck, and the deck is constrained in the vertical direction at the towers. The

bearings at bent 1 and pier 4 are designed to permit longitudinal displacement and rotation

about the transverse and vertical axis. Soil-structure interaction is not expected to be an

issue with this bridge as the foundations of the cable-stayed portion is attached to bedrock.   

The bridge is composed of two towers, 128 cables, and 12 additional piers in the approach

bridge from the Illinois side as shown in Fig. 4-8. It has a total length of 1205.8 m (3956

ft) with a main span of 350.6 m (1150 ft) and side spans of 142.7 m (468 ft) in length. The

approach on the Illinois side is 570 m (1870 ft). A cross-section of the deck is shown in

Fig. 4-9. The bridge has four lanes plus two narrower bicycle lanes, for a total width of

29.3 m (96 ft). The deck is composed of steel beams and prestressed concrete slabs. Steel,

Bent 1

(1150’) (468’) (1870’)

Pier 2 Pier 3 Pier 4

(468’)

FIGURE 4-8. Drawing of the Cape Girardeau Bridge
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ASTM A709 grade 50W, is used, with an  of 344 MPa (50 ksi). The concrete slabs are

made of prestressed concrete with a  of 41.36 MPa (6 ksi). Additionally, a concrete

barrier is located in the center of the bridge, and a railing is located along the edges of the

deck. 

The 128 cables are made of high–strength, low–relaxation steel (ASTM A882 grade 270).

The smallest cable area is 28.5 cm2 (4.41 in2) and the largest cable area is 76.3 cm2 (11.83

in2). The cables are covered with a polyethylene piping to resist corrosion. The H-shaped

towers have a height of 102.4 m (336 ft) at pier 2 and 108.5 m (356 ft) at pier 3. Each

tower supports a total 64 cables. The towers are constructed of reinforced concrete with a

resistance, , of 37.92 MPa (5.5 ksi). The cross-section of each tower varies five times

over the height of the tower, as shown in Fig. 4-10. Section A is used in the top of the legs,

section B in the middle of the legs, and section E in the bottom of the towers. Some of

these elements have variable sections. Section D shows the cross-section in the bottom

FIGURE 4-10. Cross Sections of the Towers
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strut, and section C shows the cross section of the strut located in the middle of the tower.

The approach bridge from the Illinois side is supported by 11 piers and bent 15 which are

made of concrete. The deck consists of a rigid diaphragm made of steel with a slab of

concrete at the top. The density of the materials as specified in the drawings are

summarized in Table 4-1. Detailed dimensions for the elements of the cross sectional of

the deck and the calculation of the mass are shown in Table 4-2. 

4.2.2  Finite Element Model

Based on the description of the Emerson Bridge provided in the previous section, a three-

dimensional finite element model of the bridge was developed in Matlab [64]. The model

was originally developed for the benchmark problem in structural control of cable-stayed

bridges under seismic excitation [34, 83] and has been modified to study the advantages

TABLE 4-1. Material Density

Material
Density
(Kg/m3)

Density
(PCF)

Reinforced concrete 2402.77 150
Prestressed concrete 2482.86 155
Seal Concrete 2306.66 144
Stay cable grout 2322.68 145
Structural Steel 7849.08 490
Cables (Steel) 7849.08 490

TABLE 4-2. Mass of the Elements for the Cross Section of the Deck

Item
Weight per unit length

(Kg/m) (lb/inch)
Silica fume concrete layer 34.15 75.29
Precast concrete deck 125.21 276.05
Steel girder 11.67 25.74
Floor beam 0.87 1.93
Railing 8.61 18.98
Barrier 7.73 17.05
Total 188.41 415.37
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and disadvantages of different SHM techniques. A linear model is used in this chapter.

However, the stiffness matrices used in this linear model are those of the structure

determined through a nonlinear static analysis corresponding to the deformed state of the

bridge with dead loads [86] as described in section 4.1. Additionally, the bridge is

assumed to be attached to bedrock, and the effects of soil–structure interaction are

neglected. 

The finite element model employs beam elements, cable elements, rigid link elements and

lumped mass elements. The nonlinear static analysis is performed in Matlab [64] using a

finite element toolbox developed in-house. The finite element model, shown in Fig. 4-11,

has a total of 572 nodes, 418 rigid links, 156 beam elements, 198 nodal masses and 128

cable elements. The towers are modeled using 224 nodes, 80 beam elements and 144 rigid

links. Constraint equations are applied to restrict the deck from moving in the lateral and

vertical directions and rotate with respect to the X axis at piers 2, 3 and 4. Boundary

conditions restrict the motion at pier 1 to allow only longitudinal displacement (X) and

rotations about the Y and Z axes. Because the attachment points of the cables to the deck

are above the neutral axis of the deck, and the attachment points of the cables to the tower

are outside the neutral axis of the tower, rigid links are used to connect the cables to the

tower and to the deck (see Fig. 4-12). The use of the rigid links ensures that the length and

inclination angles of the cables in the model agree with the drawings. Additionally, the

moment induced in the towers by the movement of the cables is taken into consideration

in this approach. In the case of variable sections, the average of the section is used for the

finite element. 

Note that the Illinois approach is not included in this model (see Fig. 4-8). Because the

bearing at pier 4 does not restrict either longitudinal motion or rotation about the X axis of

the bridge, the Illinois approach was found to have a negligible effect on the dynamics of

the cable-stayed portion of the bridge.
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The deck was modeled using the method described by Wilson and Gravelle [86]. In this

approach the deck is modeled as a central beam (the spine) which has no translational

mass. Lumped masses are employed to model the mass of the deck, and are connected to

the spine using rigid links (see Fig. 4-14). The masses are included to more realistically

model the torsional response of the deck to lateral loads, and have been shown to be

important in the modeling of this structure [16].

The deck is comprised of two main steel girders along each longitudinal edge of the deck

supporting the concrete slab (see Fig. 4-9). Thus, the deck is treated as a C-shaped section

as shown in Fig. 4-13 [86]. Here the steel beams are represented by the flanges of the

section, and the concrete slab is represented by the web of the C-shaped section. The axial

stiffness of the deck is calculated by converting the area of the concrete slab into an

equivalent area of steel using the ratio of the two elastic moduli. The area of the equivalent

section is 1.844m2. The moments of inertia about the vertical and transverse axes are also

obtained converting the concrete slab to an equivalent steel structure. The barriers and
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FIGURE 4-11. Finite Element Model
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railings were not taken into consideration because they are not structural elements. The

moment of inertia of the typical deck section have values of =160.67m4,

=0.6077m4, and =0.0677 m4. The neutral axis is located at 1.77m above the bottom

of the steel beams.
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Deck

Rigid Link

Rigid Link
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Rigid links

Cables

Connection between towers and cables

FIGURE 4-12. Finite Element Model of the Towers
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The calculation of the torsional stiffness of the deck section takes into consideration both

pure and warping torsional constants. The pure torsion constant is determined by [86]

(4-21)

where  and  are the length and thickness of thin sections which make up the deck

cross-section. The warping constant is calculated as [10]

(4-22)

where  is the distance between the webs of the two steel beams located along the edges

of the deck,  is the distance between the neutral axis and the middle of the concrete slab,

and  is the equivalent cross-sectional area.  and  are the moments of inertia of the

deck about the Y and Z axes, as determined previously. The torsional stiffness of the deck

was obtained using the formula [86]

(4-23)

where  is the steel shear modulus of elasticity,  is the equivalent torsional constant,

 is the pure torsion constant,  is the modulus of elasticity of steel, and  is the length

of the main span.

Calculation of the mass of the deck considers the steel beams, rigid concrete slab, barriers

and railings. To portray the behavior of the C-shaped section, the deck is represented as
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two lumped masses, each having a mass equal to half of the total mass of the deck. The

masses are joined to the beam element by a rigid link as shown in Fig. 4-14. The vertical

distance between the lumped mass and the center of the beam is equal to the distance

between the shear center and the mass center of the C-shaped section shown in Fig. 4-13.

Because the mass moment of inertia of the main deck is different than the one induced by

the lumped masses, it is necessary to make corrections to those quantities. In the

calculation, the correction consists of finding the difference between the mass moment of

inertia of the lumped masses and that of the actual deck section’s mass moment of inertia.

This difference in the mass moment of inertia is added to the node at the center of the deck

to achieve the correct value of mass moment of inertia in the section model. The mass

moment of inertia of the lumped masses with respect to the j-th axis (either the X, Y, or Z

axis), , is calculated using the formula 

(4-24)

where  is the mass of each lumped mass, and  is the perpendicular distance from the

mass to each axis. The actual mass moment of inertia of the deck with respect to the j-th

axis, , is calculated using the equation 
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. (4-25)

where  is the mass moment of inertia of each of the component of the deck with respect

to its own centroidal axis,  is the mass of each component, and  is the perpendicular

distance between the centroid of each component and the j-th axis. Thus, the corrected

mass moment of inertia of the section becomes 

(4-26)

The values of this parameter about each axis for a typical section of the deck are

 kg m2,  kg m2, and  kg m2.

Negative values indicate that the contribution of the lumped masses to the mass moment

of inertia of the section is larger than the mass moment of inertia of the actual section.

Thus, to achieve the correct mass moment of inertia for the section, a negative value is

assigned to the spine to balance the larger value included by the lumped masses when the

rigid links are condensed out. Reference [16] shows the importance of considering the C-

shaped section of the deck for dynamic simulations.

Table 4-3 shows the first 10 natural frequencies of two models of the cable stayed bridge.

The first model considers the C-shaped section of the deck and the second as described

above and the second model consider lumped masses at the spine beam. Both models are

deformed under dead loads before the modal parameters were obtained as discussed in

section 4.1. By considering the C-shaped section, rotational modes decrease in frequency

as shown by the 3th and 4th modes in table 4-3. In contrast vertical modes remain almost

unchanged.
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To reproduce the effect of the shock absorbers installed in the bridge between the towers

and the deck, constraint equations were used. The deck was allowed to displace in the

longitudinal direction and rotate with respect to the vertical axis at the connections with

the towers when the static loads where applied. For dynamic simulation these degrees of

freedom were constrained to the movement of the towers. This reproduces the behavior of

the shock absorbers which are locked by dynamic loads but allow movement under slow

moving loads.

4.2.3  Nonlinear Static Analysis

The finite element model of the Emerson Bridge described in the last section was

produced using the modified Newton-Raphson method as described in section 4.1. The

typical load-displacement curve for a cable-stayed bridge is shown in Fig. 4-15. Due to the

geometric configuration, the bridge deck gains stiffness when the dead load is applied

[38]. When the original version of the Newton-Raphson method is used, the displacements

TABLE 4-3. Natural Frequencies of Lumped vs. C-shaped Sections

Nodal mass in the spine beam C-Shaped section

Freq No.
Freq 
(Hz)

Mode Type Freq No.
Freq 
(Hz)

Mode Type

1 0.3328 Vertical 1 0.3317 Vertical
2 0.4285 Vertical 2 0.4266 Vertical
3 0.6103 Vertical 3 0.5086 Deck Rotational
4 0.6763 Vertical 4 0.5514 Deck Rotational
5 0.7328 Vertical 5 0.6108 Vertical

6 0.7418
Tower - Deck 

Torsion
6 0.6759 Vertical

7 0.7513
Tower - Deck 

Torsion
7 0.7324 Vertical

8 0.8589 Vertical 8 0.7634 Tower

9 0.9220 Transversal 9 0.7707
Tower - Deck 

Rotational

10 1.0278 Vertical 10 0.7786
Tower - Deck 

Rotational
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obtained after the first iteration will produce displacements larger than what can be

supported by the bridge (point 1 in Fig. 4-15). Thus, when calculating the stiffness matrix

for the second iteration, instabilities are produced by the large internal forces produced by

the displacements calculated in the first iteration (point 2 in Fig. 4-15). 

To avoid these difficulties the modified version of the Newton-Raphson method was

employed. Here 10% of the load error  is applied in each iteration (see Fig. 4-5),

increasing the likelihood of convergence of the method. The drawback of this

methodology is an increase in the number of iterations needed for convergence. The

tolerance for convergence is

, (4-27)

where  is the loading vector and  is the loading error in the i-th iteration. This

indicates that the iterations will be stopped when the maximum value of  is less than

1% the maximum value of . This procedure took approximately 80 iterations and 20

minutes of CPU time using a computer with Pentium 4 processor at 2 GHz.
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Figure 4-16 shows the displacements of the bridge under static loads. The vertical

deflection at mid-span is 3.29cm (1.30in), and the maximum longitudinal deflection is

5cm (1.97in). The small vertical deflection in the deck shows good agreement between the

dead loads and the pre-tension in the cables. The longitudinal displacement shown in Fig.

4-17 demonstrates that the deck is shortened by 9.23 cm (3.63 in), generating large axial

forces in the structural members.

To demonstrate the approach, figure 4-17a shows the load vs. displacement at node 170 of

the deck, located at 1/6th of the length of the main span. The vertical axis is the percentage

of the dead load applied to the structure. Positive displacement is indicated when the deck

displaces towards the ground. Negative displacements are obtained when less than 100%

of the dead load is applied due to the pretension in the cables. The dotted line indicates the

tangent stiffness at 90% of the dead load. Clearly, the stiffness of the deck increases when

the dead load is applied, as mentioned in reference [38]. The load vs. longitudinal

displacement of node 93 located at the top of one of the legs of Pier II is shown in Fig. 4-

17b. In this graphic, positive displacement is toward the center of the bridge, and negative

displacement is toward Bent 1. In contrast to the deck, the stiffness of the towers decreases
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when the load is applied due to the effect of the large compressive forces generated by the

cables.

The changes in the stiffness values play an important role in the dynamic properties of the

structure. Table 4-4 shows the first 20 natural frequencies of the bridge before and after

the nonlinear analysis. The first natural frequency is almost 13% higher after the nonlinear

static analysis is performed clearly showing the increase in the stiffness of the bridge.

4.3  Damage Sensitivity

Using the finite element model of the Emerson Bridge discussed in the previous section, a

study was performed to detect the variation of static and dynamic parameters to changes in

the members of the deck. In this study damage is defined as a reduction in the Young’s

modulus of the material, which was reduced by 5%, 10%, 20% and 30%. Damage was

induced in each of the 66 elements of the deck. After damage was induced in an element, a

nonlinear static analysis was performed to obtain the new equilibrium position of the

structure. The natural frequencies and the mode shapes of the new structure were
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determined after the static nonlinear analysis and compared with the undamaged case.

Although the nonlinear simulations and the modal analysis was performed with all the

degrees of freedom of the bridge model, this study concentrates on the vertical degrees of

freedom of the deck.

4.3.1  Sensitivity of Static Deflection to Damage

The sensitivity of the change of the deflection of the r-th node of the deck  with respect

to the change in the Young’s modulus of the s-th element  can be estimated

numerically as

TABLE 4-4. Changes in the Natural Frequencies due to Nonlinearities

Nat. Freq.
Before
(Hz)

After
(Hz)

Difference
(%)

1 0.2886 V 0.3317 V 12.98
2 0.3847 V 0.4266 V 9.81
3 0.4381 R 0.5086 R 13.87
4 0.4851 R 0.5514 R 12.02
5 0.5990 V 0.6108 V 1.93
6 0.6631 V 0.6759 V 1.90
7 0.6874 V 0.7324 V 6.14
8 0.6891 To 0.7634 To 9.73
9 0.7237 R 0.7707 R 6.09
10 0.7304 R 0.7786 R 6.19
11 0.7747 R 0.8457 R 8.39
12 0.8267 V 0.8582 V 3.66
13 0.8777 R 0.9202 R 4.62
14 0.9219 R 0.9206 R -0.13
15 0.9226 T 0.9290 T 0.68
16 1.0038 R 1.0135 R 0.95
17 1.0290 V 1.0264 V -0.25
18 1.0417 V 1.0741 V 3.01
19 1.0419 V 1.1060 V 5.7940
20 1.0701 R 1.1237 R 4.7663

V = Vertical; T = Transverse; R= Torsional; To = Tower

δr

∆Es
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, (4-28)

where the subscript  denotes the undamaged case and the subscript  denotes the

damaged case. The value of  is 10GPa, 20GPa, 40GPa and 60GPa for the 5%, 10%,

20% and 30% reduction in the Young’s modulus respectively. Figure 4-18 shows the

sensitivity of the deck deflection for each damage case. These graphs show the sensitivity

of the displacement of the r-th node of the deck with respect to changes in the Young’s

modulus in the s-th element. The peaks in every graph correspond to damage in elements 5

and 62, which produces a maximum displacement in nodes 6 and 62, respectively. Toward

the middle of each plot, some peaks are observed for damage in members close to mid-

span, which produce deflections at mid-span as well. In the 5% case the maximum

displacement obtained from the original deformed shape is 0.07cms (0.03in) and in the

30% case 0.71cms (0.28 in). In a real application these values will be very difficult if not

impossible to measure, particularly because the bridge will be in motion due to ambient

excitation (e.g., wind, traffic). Note that the sensitivity plots are similar to the

displacement plot shown in Fig. 4-16, indicating that displacements of the deck are

particularly sensitive to changes in the Young’s modulus of elements subject to higher

moments. 

Figure 4-19 shows the maximum absolute value of the sensitivity of the displacement for

damage at each element. This is

. (4-29)

These plots are equivalent to observing the absolute value of the plots shown in Fig. 4-18

with respect to the “s” and vertical axis. In these graphs the sensitivity in the deflection of

∆δr

∆Es
---------

δr u, δr d,–

∆Es
------------------------=

( )u ( )d

∆E

max ∆δ
∆Es
---------
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elements 5 and 62 is more evident. Similarly the plots shown in Fig. 4-20 show the other

side of figure 4-18. Here we can see the maximum sensitivity of each DOF in the deck due

to changes in all the elements. In this graph, points 17 and 51 corresponding to the

location of the two towers show no sensitivity to damage in the members because of the

connection of the deck to the towers. From these plots we can observe that static

displacement is more sensitive to damage when the displacement is measured further from

the support of the deck. Thus, if a SHM technique based on static displacements is to be

implemented, sensors should be located as far as possible from the supports.
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(c) 20% Change (d) 30% Change
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4.3.2  Sensitivity of Natural Frequencies to Damage

A sensitivity study is also performed to investigate the effect of damage on the natural

frequencies. The sensitivity in the natural frequency is defined as

, (4-30)
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where  is the p-th natural frequency of the undamaged model, and  is the p-th

frequency of the damaged model. These values were calculated for the first 100

frequencies which are under 4Hz and are shown in Fig. 4-21. When damage occurs, the

modes can change in order, and they may need to be sorted for a fair comparison. For the

calculation of the sensitivity of the natural frequencies, special care was taken to compare
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the same mode shapes. The property of orthogonality of the mode shapes was used for

this, as described in section 2.3.2.

Figures 4-22 and 4-23 show the maximum values per element and the maximum values

per natural frequency of the sensitivity of the natural frequencies to changes in the

Young’s modulus. Based on these plots it is possible to state that the natural frequencies

are not very sensitive to changes in Young’s modulus. Only about  Hz/GPa is

achieved. In the case of 5% change, a maximum variation of 0.008 Hz was found, and for
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the 30% loss a maximum variation of 0.066 Hz was found. Thus, natural frequencies do

not appear to be an appropriate parameter for damage detection in cable-stayed bridges. 

Nevertheless we can observe in Fig. 4-23 that the sensitivity of the natural frequencies

remains almost constant for all the damage scenarios studied. Thus, if a SHM technique

based on the natural frequencies were to be developed, it would be possible to observe

only the natural frequencies with higher sensitivity. This would be an important factor in

placing sensors along the structure. Sensors could be located on the bridge to focus on
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these natural frequencies, which would reduce the number of sensors needed for the

system.

4.3.3  Sensitivity of the Mode Shapes to Damage

The sensitivity of the mode shapes to changes in the Young’s moduli of the sections of the

deck is also studied. The sensitivity of the mode shape is defined as
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, (4-31)

where  is the p-th mode shape for the undamaged structure and  is the p-th mode

shape for the damaged structure. The numerator of Eq. 4-31 will be the maximum

difference between  and  as shown in Fig. 4-24. The mode shapes are normalized

so the maximum value is equal to 100. Thus, the difference between the undamaged and

damaged mode shapes is given as a percentage of the maximum displacement of the mode

shape. In this study only modes corresponding to the vertical mode shapes of the deck for

the first 100 natural frequencies are considered. These mode shapes correspond to modes

1, 2, 5, 6, 7, 12, 17, 18, 19, 25, 32, 37, 39, 49, 72, 77, 92, 98 and 100. These modes are

selected because most of the excitation experienced by a cable-stayed bridge under

ambient excitation is expected to be from traffic which will excite these modes. Although

some of these are higher modes, the frequency range is between 0.33Hz for the first mode

and 3.92Hz for the 100th mode, all of which are expected to be excited by ambient forces.
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Figure 4-25 shows the sensitivity of the mode shapes to the changes in the Young’s

modulus. While the maximum value of the sensitivity for the static deflection and natural

frequencies are approximately  cm/GPa and  Hz/GPa respectively, for

the 5% damage case, the mode shapes have a maximum sensitivity of about 0.4%/GPa for

the same case. Clearly the mode shapes are more sensitive than the frequencies and the

static deflection. Thus, changes in the mode shapes appear to be the best indicators of

damage for cable-stayed bridges.
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Figure 4-26 shows the maximum values of Fig. 4-25 for each element on the deck. Similar

to the static deflection, we can state that mode shapes are also more sensitive to damage in

some elements than others. In the case studied, elements close to Bent I and Pier IV have a

larger effect on the variation of the mode shapes of the structure. It was also found that the

sensitivity is fairly constant for the different levels of damage studied.
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Figure 4-27 shows the maximum values of Fig. 4-25 for each mode shape. In this graph

we can observe that some mode shapes are more sensitive to the change in stiffness than

others. For example, the 10th vertical mode shape is not as sensitive as the 11th mode

shape. Consequently, the location of the sensors along the bridge deck should be

optimized to obtain these mode shapes.
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4.4  Summary

This chapter reviewed the methodology for the development of nonlinear static models of

cable-stayed bridges due to sag in the cables, beam-column interaction, and changes in the

geometry of the structure. A nonlinear static model of the Emerson Bridge was developed.

For the construction of this model, two models of the deck were considered. The first

model uses a massless spine beam with lumped masses at the nodes. The second model

uses a modified version of the spine beam where the lumped masses are connected to rigid

links to model the C-shaped section of the deck. It was found that the C-shaped section

allowed the coupling between rotational and transverse modes of the bridge. Rotational

modes displayed lower frequencies in the C-shaped model than in the spine beam model

while vertical modes were unchanged.

Using the finite element model of the Bill Emerson Memorial bridge the effects of damage

on the static displacement, natural frequencies and mode shapes was studied. Damage was

modeled as 5%, 10%, 20% and 30% decrease in Young’s modulus for all the deck

members. A maximum change of  cm/GPa was found for the change in the

static displacement of the bridge. The maximum change for the natural frequencies was

 Hz/GPa. A change of 0.4%/GPa was found for the mode shapes, showing that

they are the parameters most sensitive to damage in the deck.
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Chapter 5 

Numerical Implementation

This chapter describes a numerical implementation for the proposed structural health

monitoring techniques described in chapter 2. The linear model of the Bill Emerson

Memorial bridge discussed in chapter 4 is used. To reduce the complexity of the problem,

only vibration in the X-Z plane of the model is considered (longitudinal and vertical axes).

This plane was selected because most of the ambient vibration in the structure is expected

to be from traffic excitation. Thus, the vertical modes of the structure are expected to be

excited more than the horizontal and rotational modes. 

Damage is induced by decreasing, the Young’s moduli of the deck members. Acceleration

records are obtained from simulations performed using a state-space representation of the

structure, and are used to determine the natural frequencies and mode shapes using NExT

and ERA. Then, the least squares solution of the eigenvalue problem is used to detect the

changes in the Young’s moduli, identifying the location and amount of damage in the

structure.

Dynamic records of the structure are required by the SHM methodologies discussed in this

dissertation. The techniques will be tested on the numerical model by introducing damage

and comparing the resulting parameters for the healthy and damaged structure. The

techniques use ambient vibration to obtain the modal properties of the structure. These

ambient vibrations will create small amplitudes, and we assume the structure will behave

linearly.
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In the first section of this chapter various identification models for structural parameter

estimation are studied. The number of sensors needed for the implementation of the least

squares solution of the eigenvalue problem is smaller for each model, in an effort to obtain

a model that can potentially be used on the actual structure. Table 5-1 shows a summary of

the different identification models studied in this section. 

In the following section a description of the state space representation of the structure is

provided. Here it is used to obtain acceleration records of the structure. A modal

representation is used to increase the speed of the simulations. Then, the modal

identification techniques (NExT and ERA) are used to detect the mode shapes and natural

frequencies of the structure from the acceleration records calculated with the state space

representation of the bridge. Here, the methods are tested for the special case of large

structures with closely spaced modes. In the last section of this chapter the complete

methodology is used to study two cases scenarios.

5.1  Identification Model

An identification model of the Bill Emerson Memorial bridge is developed herein. This

model facilitates implementation of the parameter identification techniques described in

chapter 2. The model focuses on the identification of damage in the deck members,

although the conclusions obtained in this chapter can be applied to the other members of

the bridge. 

TABLE 5-1. Summary of Identification Models

Model No. # DOF Comments
1 449 Damage identified

2 194
Modeling errors introduced a small bias error. Damage 
identified

3 142 Identification not possible due to modeling errors.

4 62
Identification possible in a portion of the deck with 
partial instrumentation.
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Two types of models of the structure are used in this section. The first type is used to

calculate the “exact” natural frequencies and mode shapes of the structure, and it is

denoted the “real model”. The “real model” represents the real structure to be identified.

This model describes the behavior of the structure in the X-Z plane (longitudinal and

vertical axes) and has a total of 449 active degrees of freedom. The second type of model

is used to identify the parameters of the structure based on the natural frequencies and

mode shapes obtained from the real model (e.g., Young’s modulus). Models of this type

are denoted “identification models”. Different identification models are tested using the

first 10 exact mode shapes and natural frequencies of the real model. These tests allow for

the determination of the effects of the towers and the cables in the identification process.

The first identification model used is identical to the real model. Consequently, no

modeling errors are expected. In this study the stiffness values of the cables and the tower

elements are assumed to be known in order to focus on the deck. Figure 5-1 shows the

identified change in the stiffness due to a 10% reduction in element 20, and 10% and 30%

reductions in elements 20 and 10, respectively. The change in stiffness is defined as
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FIGURE 5-1. Change in the Identified Stiffness for the First Identification Model

(a) 10% damage in element 20 (b) 10% damage in element 20 and
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, (5-1)

where  and  are vectors representing the identified undamaged and

damaged Young’s moduli.

In this case the methodology is able to identify the location and amount of damage. This

first identification model has a total of 449 DOF. Having 449 sensors in a real

implementation will be difficult with the current capabilities of data acquisition systems,

although is likely to be possible in the future. Still, the 449 DOF model does not represent

all motions in a full bridge.

A second identification model is studied to consider its capabilities for damage detection.

For the second identification model the nodes at the towers are constrained, reducing the

number of active degrees of freedom in the identification model and the number of sensors

needed to 194. These 194 DOF include the vertical and longitudinal accelerations as well

as the rotational accelerations of every node in the deck. Figure 5-2 shows the same cases

as Fig. 5-1 for the second identification model. A small bias error is observed in the non-

damaged members due to modeling errors in the identification model. This bias error

tends to increase with higher values of damage. 

The third evaluation model adds restraints on the longitudinal accelerations in the deck.

This reduces the number of active degrees of freedom in the identification model to 142

and includes further modeling errors in the identification process. Figure 5-3 shows the

change in the identified stiffness for the same cases shown for the previous identification

models. In this case the modeling errors do not allow the identification of damage in the

structure, showing that the longitudinal acceleration is an important factor for this bridge.

Echange %( ) 100
Eundamaged Edamaged–

Eundamaged
---------------------------------------------------×=

Eundamaged Edamaged
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This result is due to the boundary conditions for this bridge, which allow longitudinal

displacements of the deck at Bent I and Pier IV as discussed in the previous chapter.

Similar results are obtained when the rotations in the deck are restrained, showing that in

cable-stayed bridges, the rotations are important in the determination of the stiffness.

Figure 5-4 shows the vertical, longitudinal and rotational components of the first mode of

vibration (deck DOF). This result is in contrast with the results of the benchmark structure
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discussed in chapter 3. In that case, the rotation of the floors of the structure are so small,

they do not play an important factor in the identification of the structural parameters.

The fourth identification model was constructed to study the possibility of dividing the

deck into several substructures. This model has only the degrees of freedom of the deck

between Bent 1 and Pier II. Damage between elements 1 and 16 may be identified by this

model, and damage outside these elements should not affect the identified change in

stiffness. Figure 5-5 shows the stiffness change for this identification model for the same

cases studied previously. This model successfully identifies the damage in the 10th
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element and it is not affected by damage in element 20, showing that the identification

procedure can be used for sub-structures. This will allow us to have sensors only in the

critical parts of the structure or in places with difficult access. This fourth identification

model has a total of 62 DOF. 

The fourth model is used as the identification model in the remainder of this chapter. A

total of 62 acceleration measurements will be obtained from the dynamic simulations

including the longitudinal, vertical and rotational accelerations for every node in the deck

between Bent I and Pier II.

5.2  Modal Identification

This section discusses the experiences obtained with the modal identification techniques

discussed in chapter 2. In the first part of this section a description of the state-space

representation of the bridge is discussed. This was used to calculate the acceleration

records used by the modal identification methodologies. In the second part of this section

the results obtained with NExT and the ERA are presented.
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5.2.1  State Space Representation

For the dynamic simulations of the structure a state-space representation of the bridge was

determined. Consider the equation of motion of a multi-degree of freedom system

, (5-2)

where ,  and  are the mass, damping and stiffness matrices,  is the vector of

displacements at time ,  is the vector of forces at time , and  indicates

derivative with respect to time. By selecting the displacements and velocities as states, Eq.

5-2 can be written as

(5-3)

, (5-4)

where  are the states,  are the outputs of the system and matrices , ,  and

 define the state-space representation. To obtain displacements, velocities and

accelerations as the outputs of the state space representation, these matrices are

; ; ; , (5-5)

where  and  are zero and identity matrices of appropriate dimensions, respectively.

The stiffness, damping and mass matrices are decomposed into modal coordinates to

increase the speed of the simulations and to focus on the modal parameters of the

Mx·· t( ) Cx· t( ) Kx t( )+ + F t( )=

M C K x t( )

t F t( ) t
·( )

x· s t( ) Ãxs t( ) B̃F t( )+=
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xs t( ) y t( ) A B C

D

Ã 0 I
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= B̃ 0

M 1–
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0

0
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frequency range of interest [23]. Equation 5-2 describes the motion of a multi-degree of

freedom system and is repeated here

(5-6)

The displacement of the structure, , can be decomposed in terms of modal coordinates

, (5-7)

where  is the r-th mode shape,  is the r-th modal coordinate,  is the number of

degrees of freedom,  is the matrix of mode shapes and  is the vector of modal

coordinates. Replacing Eq. 5-7 in Eq. 5-6 gives

. (5-8)

Premultiplying Eq. 5-6 by  yields

, (5-9)

where

, , , and . (5-10)

To reduce the dimension of the system only a limited number of mode shapes are used in

the construction of . By selecting the first 20 modes of the structure, the size of the

numerical model is significantly reduced, preserving the same dynamic characteristics

below the 20th mode. The sampling rate used for the time simulations can also be reduced

Mx·· t( ) Cx· t( ) Kx t( )+ + F t( )=

x t( )

x t( ) φrqr t( )
r 1=

N

∑ Φq t( )= =

φr qr t( ) N

Φ q

MΦq·· t( ) CΦq· t( ) KΦq t( )+ + F t( )=

ΦT

M̂q·· t( ) Ĉq· t( ) K̂q t( )+ + F̂ t( )=

M̂ ΦTMΦ= Ĉ ΦTCΦ= K̂ ΦTKΦ= F̂ t( ) ΦTF t( )=
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without creating any errors in the simulation due to higher modes. Using Eq. 5-9 to form

the state-space representation of the system, a model with 40 states was obtained. The

transformation between modal coordinates and displacement, velocity and acceleration

can be included in the state-space representation by premultiplying the  and  matrices

by the modal matrix 

, (5-11)

. (5-12)

Figure 5-6 shows the transfer functions between vertical force at node 9 and vertical

acceleration at node 11 for the complete (850 states) and reduced (40 states) systems.

These two nodes are located between Bent I and Pier II in the deck as shown in the figure.
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The reduction had little effect on the dynamic characteristics of the system in the range of

interest.

Another option to increase the speed of the simulations is to reduce some degrees of

freedom in the finite element model before forming the state-space model using static

condensation. Static condensation starts by dividing the stiffness and mass matrices into

active and condensed degrees of freedom [23].

; , (5-13)

where the subscript  stands for active and  for condensed degree of freedom.

Assuming that no loads are applied to the condensed degrees of freedom, static

equilibrium can be written as

, (5-14)

The relation between the active and all degrees of freedom is written as

, (5-15)

where the transformation matrix  can be obtained from Eq. 5-14 as

. (5-16)
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The reduced stiffness and mass matrices are then 

; . (5-17)

Note that, using this reduction technique, some errors will be introduced because the

transformation matrix  is based on static equation and does not include the mass and

damping matrices. Although this reduction has been found effective to form a reduced

order model of the structure [34], the reduction using modal decomposition was used in

this study because a more significant reduction can be achieved with minimum impact in

the structural model.

5.2.2  Modal ID with NExT and ERA

Independent broad-band random excitations are generated with the Matlab command

randn for simulation of the bridge response. The excitation is applied to all the vertical

nodes of the bridge deck simulating random traffic loads. Figure 5-7 shows one minute of

the force used in the simulations. A linear simulation of the bridge is performed using the

state-space representation described in section 5.2.1. The Matlab command lsim is used to

calculate the response of the system. A sampling frequency of 20 Hz and sample length of

31 minutes are used in the simulation. The first minute of each of the acceleration records

is neglected to avoid including transient data in the identification process. Although the

time used for the analysis seems long, 30 minutes records 529 cycles at the first natural

frequency of the bridge (0.29 Hz). This time is comparable to the 540 cycles that a

building with first natural frequency of 9Hz would have in a one minute record (chapter

3). 

After the simulation the acceleration records were resampled to 3 Hz using the Matlab

command resample. This approach allows us to identify modes up to 1.5 Hz, covering the

M̂ TTMT= K̂ TTKT=

T
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first 12 vertical modes of the bridge corresponding to 0.293, 0.391, 0.602, 0.664, 0.730,

0.879, 1.03, 1.07, 1.10, 1.26 and 1.49 Hz.

The Natural Excitation Technique (NExT) and the Eigensystem Realization Algorithm

(ERA) are applied to the acceleration records for the identification of natural frequencies,

mode shapes and damping ratios. When calculating the cross spectral density function, a

boxcar window of 512 points and 75% overlapping between frames is used. Figure 5-8

shows typical cross spectral density and cross correlation functions.
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In the ERA, 77 points of the cross spectral density functions are used to form a 40 by 1200

Hankel matrix. This corresponds to the dotted line in the cross correlation function shown

in Fig. 5-8. In selecting the size of the Hankel matrix, special care was taken to select only

the part of the cross correlation function that clearly shows a decay, avoiding the “noisy”

data at the end of the cross-correlation function.

Fig. 5-9 shows a typical plot of the singular values of the Hankel matrix. Note that the

singular values decrease monotonically, in contrast to other structures such as the building

studied in chapter 3. Theoretically, the 11 vertical frequencies of the bridge will produce a

jump close to the 22nd singular value which is not observed in this plot. By looking at the

distribution of the singular values it is not possible to determine the number of frequencies

to be identified. Thus, the cross spectral density function should be used to determine the

number of natural frequencies to be identified in this type of structure. When the number

of rows of the Hankel matrix is reduced to 120, the jump in the singular values is evident,

but the frequencies and mode shapes identified by the technique are inaccurate. Accuracy

in the identified modal parameters increases with a larger number of rows in the Hankel

matrix. Thus, the number of rows should be selected by including as many points as

possible of the decaying part of the cross correlation function (see Fig. 5-8).

The natural frequencies identified by the method are different depending on the reference

channel selected to calculate the cross correlation functions. Furthermore, the accuracy of

the identified mode shapes is also dependent on the reference channel. For example, Fig.

5-10 shows the identified mode shape of the undamaged structure for the 3rd vertical

natural frequency using channels 3 and 10. These mode shapes correspond to the degrees

of freedom of the identification model (between Bent I and Pier II) and are normalized so

the higher amplitude is equal to one. Some differences between the two identified mode

shapes are observed.
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Usually the ERA is applied by selecting a single reference channel. This reference channel

should be selected at a point on the structure that is far from a node of vibration. In

buildings the obvious solution would be a sensor located on the roof of the structure, but

for this implementation the selection of the reference channel is not obvious. Only one

column of the full cross correlation function matrix will be used for one reference channel,

but the same method can be applied to all the columns of the cross correlation function

matrix by selecting each channel as the reference. This approach will result in n sets of

identified natural frequencies and mode shapes, where n is the number of reference

channels. The identified modal parameters are selected as the average of these n sets.
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Resulting m parameters corresponding to damping ratios higher than 4% and lower than

1% were not used in the analysis as they are not expected to be accurate modes.

Figure 5-11 shows the identified natural frequencies using every vertical acceleration as a

reference channel. Correct natural frequencies appear at the same frequency for several

reference channels while numerical errors appear as isolated frequencies in few reference

channels. Seven of the 11 modes between 0 and 1.5 Hz for the undamaged structure were

clearly identified by the method. 

Figure 5-11b shows a histogram of the information shown in Fig. 5-11a. Here a spike is

clearly shown for each identified natural frequency. Note that it is more difficult to detect

closely spaced natural frequencies, such as the 7th, 8th and 9th modes, but the

methodology is able to identify some of these modes. Table 5-2 shows the identified

natural frequencies and the error obtained in the identification. The maximum error is
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0.51% in the identification of the second mode. Even though not all modes were

identified, the method is accurate.

More natural frequencies can be identified by increasing the record length. This result is

due to a better estimation of the cross correlation function because of a greater number of

averages in the calculation of the cross spectral density function. Table 5-3 shows the

identified natural frequencies with a two hour record. The last natural frequency was not

identified because it is very close to the end of the frequency range being inspected (0 to

1.5 Hz). Although more modes can be obtained with a two hour record, the remaining part

of this chapter uses 30 minute records. 

As described previously, the identified mode shapes are slightly different for different

reference channels. This variation can be used as a measure of the accuracy of the

identified mode shape. Figure 5-12 shows the average, upper bound and lower bound of

the 1st and 6th identified modes. The modes are each normalized such that the maximum

value of the average is equal to one. The maximum difference between the upper bound

and the lower bound for the 1st mode shape is 0.028, and for the 6th mode shape is 0.254

indicating that the 1st mode shape is more precisely identified. This error between the

TABLE 5-2. Identified Natural Frequencies

Freq. No. Exact (Hz) Identified (Hz) Error (%)
1 0.2931 0.2922 0.3071
2 0.3912 0.3892 0.5112
3 0.6025 0.6024 0.0166
4 0.6643 0.6639 0.0602
5 0.7303 0.7353 0.6847
6 0.8789 - -
7 1.0303 1.0326 0.2232
8 1.0712 1.0762 0.4668
9 1.0963 - -
10 1.2651 - -
11 1.4914 - -
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upper and lower bounds can be used as a measure to accept or reject an identified mode. It

was found that closely spaced modes present higher errors in the estimation of the mode

shapes than modes that are farther apart.

TABLE 5-3. Identified Natural Frequencies for a Two Hour Record

Freq. No. Exact (Hz) Identified (Hz) Error (%)
1 0.2931 0.2935 0.1517
2 0.3912 0.3922 0.2470
3 0.6025 0.6045 0.3390
4 0.6643 0.6650 0.1052
5 0.7303 0.7345 0.5735
6 0.8789 0.8810 0.2380
7 1.0303 1.0373 0.6793
8 1.0712 1.0834 1.1431
9 1.0963 1.0881 0.7523
10 1.2651 1.2671 0.1579
11 1.4914 - -
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5.3  Damage Scenarios

A damage identification exercise is next performed using the identification model

developed in section 5.1 and the modal parameters found in the previous section. Two

damage scenarios are studied. The first damage corresponds to a 30% change in stiffness

in element number 5, and the second is a 20% damage in element 20. The first case lies

inside the sub-structure being monitored with the identification model, and the second

case is outside this sub-structure. For the modal identification, 30 minutes of acceleration

records resampled at 3Hz are used. These acceleration records correspond to the

longitudinal, vertical and rotational accelerations of the deck nodes between Bent I and

Pier II (62 channels). For the calculation of the cross spectral density function matrix a

window of 512 points is used with 75% overlapping. The Hankel matrix used in the ERA

has 40 columns and 1200 rows, utilizing 77 points of the cross spectral density function.

Table 5-4 shows the identified natural frequencies for each case. Different natural

frequencies are identified for the different damage cases. The 6th, 9th, 10th and 11th are

not identified for the healthy structure; the 4th, 6th, 10th, and 11th modal parameters are

not identified for the first damage case; and for the second damage case the 1st, 8th, and

11th modal parameters are not identified. It is difficult to determine if the structure is

damaged by the changes of the identified natural frequencies even though the damage in

the structure is severe. This result agrees with the conclusions obtained in chapter 4.

Figure 5-13 shows the identified loss in stiffness using the fourth identification model

discussed in section 5.1. Damage can be clearly identified and quantified by a loss in the

stiffness in element number five for the first damage case. The second damage case did

not affect the identified change in stiffness, indicating that the methodology can be applied

to a portion of a structure.
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5.4  Summary

In this chapter a numerical implementation of the SHM methodology was discussed. The

method was implemented on the numerical model of the Bill Emerson Memorial Bridge.

Four different identification models were tested to identify what measurements are

important for the structural parameter identification procedure. For the identification of

damage in the bridge deck the dynamics of the tower have little effect, and no measures in

TABLE 5-4. Identified Natural Frequencies for Damage Scenarios

Freq. No. Undamaged (Hz) 30% at element 5 20% at element 20
1 0.2922  0.2937 -
2 0.3892 0.3882 0.3936
3 0.6024 0.5967 0.6064
4 0.6639 - 0.6594
5 0.7353 0.7300 0.7242
6 - - 0.8925
7 1.0326 1.0378 1.0255
8 1.0762 1.0737 -
9 - 1.0899 1.0969
10 - - 1.2703
11 - - -
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the towers are needed. It was also shown that the deck can be divided into sub-structures

to reduce the number of sensors required. Longitudinal and vertical accelerations as well

as rotational accelerations with respect to the transverse axis of the elements being

monitored were found to have a strong impact in the identification procedure. This result

conflicts with the results obtained in chapter 3, where rotations at the floors with respect to

the X and Y axes were not important.

Here NExT and ERA correctly identified natural frequencies and mode shapes of the

structure using 30 minute records with a sampling frequency of 3Hz. Long records are

needed in this type of structure because of their low frequency behavior, although a high

sampling rate is not necessary. Seven of the 11 available natural frequencies in the

frequency range studied were identified for the undamaged structure. Even though not all

the available natural frequencies were identified, the identification of damage was

accurate. The identified mode shapes using two different reference channels are slightly

different. A set of natural frequencies and mode shapes for a particular mode can be

obtained by applying the methodology using different reference channels. A lower bound

and upper bound for the estimated mode shapes can be obtained from this set, indicating

the accuracy of the identification. It was found that the accuracy and the amount of

identified parameters improves by using longer records due to better estimation of the

cross spectral density function matrix.

Two damage scenarios were studied using the complete SHM methodology. The

identification model focused on the elements between Bent 1 and Pier IV. In the first

damage case, an element in the section being monitored was damaged by 30% and in the

second case an element outside this section was damaged by 20%. The damage was

successfully identified in the first damage scenario. In the second case no change in the

Young’s modulus was observed in the elements being monitored, showing the ability of

the methodology to be applied to a portion of a structure.
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Chapter 6 

Experimental Implementation

An model was designed and built to experimentally verify the structural health monitoring

methodology described in this dissertation. In the first part of this chapter, a description of

the laboratory model is provided. Next, an identification model of the structure is

discussed. This identification model focuses on the last six elements of the bridge

(elements 25 through 30) and has a total of 12 active degrees of freedom. Hammer testing

is used to determine the transfer function matrix between the force applied by the hammer

and the acceleration records of the active DOF of the identification model. Then, the ERA

is used to identify the natural frequencies and mode shapes of the structure based on the

recorded data. A case scenario is presented where element 29 of the bridge is damaged.

The parameter identification technique is used to identify the damaged element.

6.1  Cable-Stayed Bridge Model

An experimental model used to reproduce the complex behavior of cable-stayed structures

was designed. The stainless steel experimental model shown in Fig. 6-1 has a total length

of 2m (78 in) and a width of 19cm (7.5 in). The model was designed such that additional

experiments could be performed by changing the mass, the stiffness of the deck members,

the number of towers or the type of boundary conditions. The structure is supported by a

single tower and two end supports (bents). Sixty cables are used to support the deck,
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which is composed of thirty cm (  in) transverse deck

members, sixty cm (  in) longitudinal members and

twenty eight lead masses. The cables connect the tower and the transverse members. Two

longitudinal members are used to connect each transverse member using two screws at

each end. Additionally a 0.57kg (1.25 lb) mass is added to each section of the deck by a

lead disk of 7cm (2.75in) radius and 1.27cm (0.5in) thick. To tension the cables a hollow

FIGURE 6-1. Laboratory Model
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FIGURE 6-2. Laboratory Model - Deck
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screw in the transverse deck members was used on each side as shown in Fig. 6-2. The

cables are tensioned by loosening the screw and untensioned by tightening the screw. A

lock nut was used to secure the screw once the cable was set to the desired tension.

The H-shaped tower was constructed using two cm (  in) square

bars. The tower is 50cm (19.5 in) tall, the bottom is 29cm (11.37in) wide and the top

section is 18.41cm (7.25in). The cables are connected at 1.27cm (0.5 in) increments,

starting at 2.54cm (1in) from the top of the tower. Each cable is connected independently

to each side of the tower as shown in Fig. 6-3. To connect the cables to the tower a small

U-shaped element was built. Two of these elements are connected from each side of the

tower using two screws, and the cable is connected to the tower using the hole in each side

of the tower as shown in Fig. 6-3c.

The connection between the deck and the tower allows rotations with respect to the

transverse axis of the bridge but restrains any other type of movement. At the other

supports the deck is free to rotate with respect to the vertical axis and displace in the

longitudinal direction. This boundary condition was achieved using a slotted bolt in the

0.63 0.63× 0.25 0.25×

FIGURE 6-3. Laboratory Model - Tower
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middle of the end transverse elements of the deck. These boundary conditions are the

same as the boundary conditions for the Bill Emerson Memorial Bridge discussed in

Chapters 4 and 5. The boundary conditions of the bridge can be easily changed for future

studies. Detailed plans used for the fabrication of the bridge can be found in Appendix A.

Before the bridge was tested the cables were tensioned to a predetermined value. The

natural frequency of each cable was used to determine the tension in each cable. A

microphone was connected to a computer and the sound produced by the cable was

recorded. A spectral density function of the recorded sound is calculated and the cable is

tensioned until the peak corresponding to the first natural frequency matches the target

frequency calculated by

, (6-1)

where  is the first natural frequency of the cable,  is the length of the cable,  is the

tension on the cable and  is the mass density per unit length. A Matlab program was used

to record and analyze the data (see Fig. 6-4). Note that the frequency of a cable including
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γ
---=
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FIGURE 6-4. GUI to Measure the Tension in the Cables
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the catenary shape is not used here due to the light mass of the cables. The sound was

recorded using the sound card of the computer with a sample frequency of 11025Hz and

resampled to a lower frequency using Matlab. Then, the power spectral density was

calculated and the natural frequency was selected from the peaks of the power spectral

density. By inserting the information for each cable in the GUI shown in Fig. 6-4, the

tension in the cable was calculated using Eq. 6-1. Figure 6-5 shows a plot of a typical

sound record and its power spectral density. In this figure the first natural frequency is

clearly close to 50 Hz. The second, third and fourth natural frequencies of the cable are

also observed near 100, 150 and 200 Hz, respectively. 

The length, tension and target natural frequency of each cable are shown in Table 6-1. The

process of tensioning the cables is iterative because of the interaction of the tension of the

different cables. After tensioning each cable, an additional set of data was obtained to

assure that all the cables were correctly tensioned. The tension in each cable is shown in

Table 6-2, where the cables are numbered as shown in Fig. 6-6.  
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TABLE 6-1. Cable Frequency and Target Tensions

Cable 
No.

Length 
(m)

Target 
Frequency (Hz)

Target Tension
(N)

1 1.22 52 22
2 1.15 54 21
3 1.07 57 20
4 1.00 58 18
5 0.93 61 18
6 0.85 64 16
7 0.78 68 15
8 0.71 72 14
9 0.64 76 13
10 0.57 84 12
11 0.50 94 12
12 0.43 101 10
13 0.37 112 9
14 0.32 123 8
15 0.28 135 7

FIGURE 6-6. Cable Numbering

Left Front

Right Front

Left Back

Cable 1

Cable 15

Cable 1 }}}} Right Back



129
6.2  Implementation

6.2.1  Identification Model

An identification model for the laboratory structure was developed to validate

experimentally the proposed SHM technique. Here, the deck is modeled as a spine beam

composed of 30 beam elements as shown in Fig. 6-7. Thirty five beam elements are used

to model the tower, 60 cable elements are used for the cables, and 60 rigid links are used

to connect the cables to the deck beam. Because of a limited number of sensors is

available, the substructure approach is adopted. The focus is on the identification of

damage in the last five elements of the deck (elements 25 to 30) shown by the thick line in

Fig. 6-7. This is similar to the numerical implementation performed for the Emerson

Bridge in Chapter 5. Thus, the only available degrees of freedom are the rotations with

respect to the transverse axis and the vertical displacements of nodes 25 to 30 for a total of

TABLE 6-2. Final Tension of the Cables

Cable 
No.

First Natural Frequency (Hz)

Left Front Left Back Right Front Right Back
1 51.9 53.7 51.9 51.2
2 54.6 55.0 53.0 53.8
3 57.6 57.6 56.0 57.0
4 58.3 58.8 58.8 58.1
5 61.7 61.5 62.0 61.7
6 64.0 63.9 64.6 64.6
7 67.8 68.5 67.9 69.1
8 71.7 72.3 72.3 73.0
9 76.4 75.6 78.0 77.4
10 83.1 82.4 85.7 85.7
11 96.5 96.6 94.0 92.1
12 97.8 106.2 101.7 101.8
13 112.3 109.4 111.9 115.7
14 118.9 125.4 129.8 120.9
15 134.4 136.9 134.4 137.5
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12 active DOF. Node 31 is constrained because it is connected to the support in the real

structure.

The identification model was evaluated using a numerical example prior to use in the

experiment. This evaluation was performed using the same procedure described in the

previous chapter. The identification model, without constraints (379 DOF), was used for

the calculation of the modal parameters. Figure 6-8 shows the final results of the SHM

technique for a 10% loss in element 28. As shown in the graph, small errors were

introduced by the difference in active degrees of freedom between the identification

model (12 DOF) and the model used for determining the modal parameters (379 DOF). In

this evaluation the first 10 natural frequencies and mode shapes were used.

FIGURE 6-7. Identification Model
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FIGURE 6-8. Numerical Evaluation of ID Model
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6.2.2  Experimental Setup

An impact hammer was used to test the model due to low level of ambient vibrations

available in the laboratory. The model was fixed to a 52 metric ton (115000 lb) concrete

base of the earthquake simulator which filters most of the excitation from the surrounding

environment. A PCB 086C03 modally tuned impact hammer with the 084B05 impact cap

was used for the impact force. The hammer used has a sensitivity of 2.17 mV/N (9.66 mV/

lb) without the steel extender. Six PCB 370A02 accelerometers were secured to the deck

at the transverse beams corresponding to the active degrees of freedom in the

identification model (nodes 25 to 30).   The accelerometers have a resolution of 0.00032 g

and a range of 20 g. Their individual specifications are found in Table 6-3. Three Siglab

20-42 data acquisition boxes were used to collect the data from the hammer and the six

accelerometers. 

The transfer functions between the force applied by the hammer and the acceleration at the

different points were calculated using the virtual network analyzer (VNA) tool available in

the Siglab data acquisition system. A bandwidth of 100Hz was chosen for the

experiments, allowing us to determine the natural frequencies of the model below 50 Hz.

Fifteen hits were performed in each test with a record length of 512 points and 50%

overlapping between windows. The average transfer function for each hit was computed

and used for the analysis. Antialiasing filters were used to avoid aliasing of higher

frequencies to the range of interest. The window F20_Exp.01 available in Siglab was

used. This window records only the first 20% in the hammer channel to avoid recording

TABLE 6-3. Accelerometers Specifications

PCB Accelerometer Model: 370A02
Serial No. 631 852 641 651 656 839
Voltage Sensitivity (mV/g) 102.1 101.6 101.2 98.5 103.3 101.4
Transverse Sensitivity (%) 0.6 0.3 0.4 0.3 0.6 0.7
Resonant Frequency (Hz) 1160 1220 1180 1220 1220 1180
Zero g Offset Voltage (mV DC) 3 -11 -15 36 4 11
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noise (e.g. the person resting the hammer on a table) and the remaining portion is padded

with zeros. This also applies an exponential window to the acceleration data to avoid

leakage in the calculation of transfer functions. The damping associated with this window

is one percent of critical.

Different gains were used for the different types of sensors. Table 6-4 shows the gains

selected for each channel in the data acquisition system and the gain for each sensor in the

power amplifier. Before every test the DC value of the accelerometers was set to zero

using the variable gain in the power amplifier.

The hammer was used to hit the structure at the head of the screw holding the lead masses

as shown in Fig. 6-9a. This location was selected to avoid excitation of any torsional

modes. All active degrees of freedom in the identification model were selected as impact

locations. This facilitates determination of the full transfer function matrix between

vertical forces and vertical accelerations in the area of interest because a sensor was also

placed at each location.

The rotation at each degree of freedom is an important factor in the identification process

as discussed in Chapter 5. No rotational accelerometers were available to measure these

rotations; thus the transfer functions between a moment applied to the structure and the

resulting vertical accelerations were used. For this, the screws used to hold the additional

lead masses were extended, and the hammer was used to apply a force at the end of the

TABLE 6-4. Channel Setup

Channel No. 1 2 3 4 5 6 7

Sensor Serial No. Hammer 631 852 641 651 656 839

Location (Beam No.) 25 26 27 28 29 30

Power Amplifier gain 10 100 100 100 100 100 100

Range in Data 
Acquisition System (V)

1.3± 10± 10± 10± 10± 10± 10±
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screw in the longitudinal direction (See Fig. 6-9b). This applies a moment to the deck and

a force in the longitudinal direction. The applied moment is equal to the force applied by

the hammer times the length of the screw, measured as 10cm (4in). Because the

accelerometers measure the vertical acceleration, only the response due to the applied

moment will be captured. Also, the longitudinal modes are expected to have much higher

frequency than the vertical modes, lying outside the frequency range of interest. When the

moment is applied to the structure, vertical movement at the deck is observed. This

procedure is then repeated at each node where rotations are required (Nodes 25 to 30).

6.2.3  Results

Figure 6-10a shows a typical transfer function obtained from the experiment. Note that a

high DC value is obtained due to the type of accelerometers used (DC accelerometers). In

reality the DC value should be zero because a static load will produce no acceleration. The

high DC values may produce some errors in the identification process using the ERA

because this approach yields a pole at or near zero. To avoid this problem, the magnitude

of the recorded transfer functions was adjusted below 5 Hz. This change does not affect

the modal information obtained using the ERA because the resonant frequencies of the

FIGURE 6-9. Hammer Tests

(a) Impulse Force (b) Impulse Moment
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structure are higher than 5Hz. Figure 6-10b shows the new transfer function. The

sensitivity of the accelerometers and the gain factors of the power supply has been taken

into account in this new transfer function.

The ERA can be used with free responses or with impulse response functions as discussed

in Chapter 2. Here, impulse response functions calculated as the inverse Fourier transform

of the transfer functions were used. Figure 6-11 shows a typical impulse response

function. A Hankel matrix with 40 columns and 1200 rows was used in the identification.
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Six sets of natural frequencies and mode shapes were calculated with the ERA (one for

each sensor), similar to the procedure followed in the previous chapter. Figure 6-12a

shows the identified natural frequencies for each run. The natural frequencies of the

structure can be clearly identified from this plot. Figure 6-12b shows the variation

average, as well as the upper and lower bounds of the identified fourth mode shape. A

small variation is observed between the upper and lower bounds. The average of the six

measurements is used for the identification of the elemental properties of the structure.

Four different tests were performed. Two tests were conducted with the healthy structure,

and two with a damaged structure. Damage was induced in the structure by replacing the

longitudinal members at section 29 with a new “damaged” element. The height of the

cross sectional area of the new members was reduced by 0.13cm (0.05 in). This change

corresponds to a reduction of 50% in the moment of inertia of the element with respect to

the transverse axis. The identified natural frequencies for the healthy and damaged

structures are shown in Table 6-5. The eight natural frequencies from tests 2 and 4 were

discarded due to the high variation between the upper and lower bounds of the identified

mode shapes. 
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A change in the natural frequency is observed in the natural frequencies. The healthy

structure has higher natural frequencies than the damaged structure as expected. The

maximum variation was calculated to be 1.75% and occurred between the 6th natural

frequencies in tests 1 and 3.

Figure 6-13 shows the 4th mode shape for each test. This graph shows good agreement

between tests 1 and 2, and tests 3 and 4 for the translational DOF. In the rotational degrees

TABLE 6-5. Identified Natural Frequencies

Freq. No.
Healthy Structure Damaged Structure

Test 1 Test 2 Test 3 Test 4
1 6.29 6.29 6.24 6.24
2 15.23 15.22 15.16 15.16
3 16.90 16.90 16.67 16.72
4 21.90 21.91 21.56 21.57
5 27.32 27.33 26.92 27.03
6 30.10 30.10 29.57 29.58
7 39.01 39.00 38.61 38.87
8 41.61 - 41.24 -
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of freedom, this agreement is not as good as in the translational DOF. These results could

be improved by obtaining a better measure of the rotational DOF, perhaps by using

rotational accelerometers. A maximum variation of 18.7% is observed for the translational

DOF of this mode shape. The variation in the mode shape is larger than the variation in the

natural frequencies, in agreement with the results found in previous chapters.

Using the identified parameters, the change in the stiffness was calculated as shown in

Fig. 6-14. In this plot it is clear that the maximum variation in stiffness occurs in element

29. Small changes in the stiffness are obtained in the other elements, most likely due to

errors introduced in the measurements of the rotational degrees of freedom and modeling

errors. Although the location of damage was clearly identified, the change in stiffness in

the damaged member was expected to be 50%, but only 33% was identified.

6.3  Summary

In this chapter the experimental implementation of the SHM technique proposed in this

dissertation is discussed. The implementation is performed using a laboratory model

constructed to reproduce the complex behaviors of cable-stayed bridges. A description of
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the structure is provided, and detailed plans used for the fabrication of the model are

included in Appendix A.

An identification model to detect damage in the experimental structure was developed.

This model focused on the 6 beams of the bridge close to one end, and has a total of 12

active degrees of freedom. A numerical study to verify the identification model was

performed, similar to the numerical implementation discussed in the previous chapter. The

conclusions of this numerical evaluation demonstrated that the identification model was

appropriated to detect damage in these 6 elements.

Hammer testing was performed using the experimental model to determine the natural

frequencies and mode shapes of the structure in both healthy and damaged configurations.

The transfer functions between the forces applied by the hammer and six accelerometers

was obtained. To calculate the rotational degrees of freedom, an impact moment was

applied to the structure. This impact moment was achieved by applying an impact force to

a relatively rigid extension below the section of the deck. The impact was applied along in

the longitudinal axis of the bridge, resulting in a moment with respect to the transverse

axis and a force in the longitudinal direction of the bridge.

The damage scenario was conducted by replacing the members corresponding to bay 29 of

the bridge with smaller members. The ERA was applied to the frequency response

functions obtained from the tests to determine the experimental natural frequencies and

mode shapes of the structure. The identified natural frequencies only changed by 1.75%

with the induced damaged while the 4th mode shape changed as much as 18.7% in the

vertical DOF. This results indicates that the mode shapes are more sensitive to damage,

agreeing with the results obtained in previous chapters.

The identification model was implemented to calculate the stiffness change between the

damaged and undamaged stages. The methodology was successful in identifying the
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location of damage, but the amount of damage was underestimated. These results are

expected to improve with the addition of sensors to measure the rotational degrees of

freedom.
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Chapter 7 

Conclusions and Future Work

This dissertation proposes and validates a structural health monitoring technique that can

be applied to large flexible civil structures such as cable-stayed bridges. The methodology

uses available techniques for modal identification such as the natural excitation technique

(NExT) and the eigensystem realization algorithm (ERA). The identified modal

parameters are used in a least squares solution of the eigenvalue problem for parameter

identification. The proposed approach uses the geometry of the structure to identify

parameters of structural members, such as Young’s modulus, based on natural frequencies

and mode shapes. The least squares solution of the eigenvalue problem is applied using a

procedure similar to the finite element method. First, elemental matrices are created and

transformed from local to general coordinates. Then, the complete identification model is

assembled. Constraints and boundary conditions are then applied to the identification

model. 

The advantages of the proposed methodology include the following:

• It can be applied using ambient excitation, allowing the monitoring of structures 

during operation.

• It can be applied to portions of the structure or sub-structures, reducing the number 

of sensors needed.

• It does not require sorting and/or matching natural frequencies and mode shapes 

from different tests.
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• The modal identification part of the method can be applied to closely space modes.

• The least squares part of the eigenvalue problem is applied using a procedure simi-

lar to the finite element method, increasing the speed of its implementation.

The disadvantages of the methodology include:

• It requires long records (greater than 30 minutes) for the identification of modal 

parameters of flexible structures due to the low frequency behavior of these struc-

tures.

• When identifying structures such as cable-stayed bridges the rotational components 

of the mode shapes are needed to successfully locate damage in the structure, 

requiring additional sensors.

• An estimate of the mass of the structure is needed for the determination of the struc-

tural parameters.

The methodology was applied to three structures. The first structure is the IASC-ASCE

benchmark test structure. Three different cases, two numerical and one experimental were

studied. The methodology was also applied to a numerical model of the Bill Emerson

Memorial Bridge and to a laboratory test structure built to reproduce the challenges

encountered in cable-stayed bridges.

The ERA was originally developed to use impulse response functions, although it can also

be used with free response data. Using free response data the ERA cannot obtain the B and

D matrices of the state-space representation, but it can accurately identify the A and C

matrices. These last two are sufficient to determine the modal parameters of a structure.

The proposed methodology was applied to the first two numerical phases and the first

experimental phase of the IASC-ASC Benchmark Problem. In the second numerical phase

it was found that analyzing the results of several identification models produces more
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precise information than only using a single identification model. The blind cases studied

are a clear example of this. Here a 8 DOF identification model was used to detect the floor

where damage occurs, and a 12 DOF identification model was subsequently used to

identify the damaged side of the structure. The use of ambient vibration for SHM was

validated during the experimental phase of this study. Here, the modal parameters

obtained with ambient vibration were in good agreement with the natural frequencies and

mode shapes obtained by hammer tests.

A model of the Bill Emerson Memorial Bridge was developed and employed to validate

the proposed SHM technique and study the sensitivity of various parameters to damage in

the deck. First, the model of the deck was found to be very important in modeling of

cable-stayed bridges. Two different deck models were considered. The first model used a

spine beam with nodal masses, and the second model used lumped masses connected with

rigid links to better reproduce the behavior of the C-shaped section of the deck. A

comparison between the natural frequencies of these two models demonstrated that the C-

shaped section model increases the coupling between rotational and transverse modes of

vibration, while vertical modes remain almost unchanged.

The sensitivity of the static displacement, natural frequencies and mode shapes to damage

in the deck of the Emerson Bridge was also studied. The study concluded that the natural

frequencies and the static displacement are considerably less sensitive to damage than the

mode shapes. Thus, the detection of the mode shapes is of vital importance in the

development and implementation of SHM for this type of structures. Similar results were

obtained in the implementation of the methodology to the laboratory test structure.

The numerical model of the Emerson Bridge was also used to study the implementation of

the proposed methodology for cable-stayed bridges. Here NExT and ERA were

successfully implemented for the identification of closely space modes. Various

identification models of decreasing complexity were studied, yielding an important result
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that measuring the rotational accelerations with respect to the transverse axis and the

longitudinal accelerations of the bridge’s deck are essential for damage identification.

Considerable modeling errors were found in the methodology when these measurements

are not included in the identification model. It also was found that the methodology can be

applied to substructures. This allows for the implementation of the methodology to critical

sections of the bridge, reducing the number of sensors needed. The methodology was

successful in detecting and locating damage in the numerical model using a few modes of

vibration. These modes do not need to be the same between the different tests. This is of

importance in structures with closely spaced modes because modes can change places

(e.g. the 9th mode become the 8th mode) due to damage.

In the last chapter of this dissertation the proposed SHM methodology was implemented

on a laboratory structure. The structure was designed and built for studies in SHM and

structural control. A complete description of the structure is provided in Appendix A.

Hammer testing was used for the modal identification of the structure. The experimental

transfer functions between the force produced by the hammer and six accelerometers was

determined. The impulse response functions were calculated as the inverse Fourier

transform of the transfer functions. Next, the ERA was used to identify the modal

parameters of the structure using the impulse response functions. The modal parameters of

a healthy and damaged structure were compared. The mode shapes were found to be more

sensitive to damage than the natural frequencies, agreeing with the results obtained in the

sensitivity study. An identification model focusing on a subsection of the deck was

developed and used to successfully identify damage in a case scenario. Here the

methodology was successful in identifying the location of damage, but the extent of

damage was underestimated.
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7.1  Future Work

NExT has been developed for broadband, stationary excitations. Although several

researchers have successfully applied the methodology to the case of non-stationary

excitations, further studies are needed for a better understanding of this technique under

different types of excitations. The frequency range of the ambient vibration in large

bridges should also be studied to determine the most likely modal parameters to be

detected. The identification of higher modes will reduce the record length needed for the

implementation of the proposed methodology.

In this dissertation a study of the sensitivity of different parameters to damage was

performed. A study of the sensitivity of these parameters to changes in the environment

such as temperature and humidity seems appropriate for the implementation of the

methodology in a real structure. The results of this study may be included in the proposed

methodology to adjust the modal parameters of the structure before the identification of

structural parameters.

Additionally, it would be appropriate to associate a probabilistic measure with the damage

identified in the structure. Although in the implementation of the technique some

averaging is performed in the calculation of the cross spectral density functions and in the

least squares solution of the eigenvalue problem, a probabilistic framework seems

justified. An index of the confidence of the results should be developed to have a measure

of the accuracy of the results obtained.

A large number of sensors is typically needed for the implementation of SHM techniques

on flexible civil structures such as cable-stayed bridges. Thus, determination of the

optimal location of these sensors should be addressed to reduce the cost and

computational efforts associated with implementation. 



145
Furthermore, constant monitoring of these structures will produce a vast amount of

information. Thus, there is a need for research in appropriate methods to manage this

information. These studies should consider different levels of information for different

users. While in an emergency we might only be concerned with life safety issues, annual

bridge inspections might be more interested in near-term repairs that may extend the life

of the structure. Information related to damage identification might be included with other

types of information, such as traffic, to provide owners with the overall performance of

the structure.
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Appendix A

Model Drawings

Drawings of the experimental model used in Chapter 6 are provided here.     



147



148



149



150



151



152



153
References

[1] Au, S.K., Yuen, K.V. and Beck, J.L., “Two-stage System Identification Results for
Benchmark Structure”, Proceedings of the 14th ASCE Engineering Mechanics
Conference, Austin, Texas, May 21-24, 2000.

[2] Asmussen J.C., Modal Analysis Based on the Random Decrement Technique.
Application to Civil Engineering Structures. Ph.D. Thesis, University of Aalborg,
Denmakr, 1997.

[3] Beck, J.L., May, B.S., and Polidori, D.C., “Determination of modal parameters
from ambient vibration data for structural health monitoring”, First World
Conference on Structural Control, California, USA, 3-5 August 1994.

[4] Beck J.L, Katafygiotis, L.S., “Updating Models and Their Uncertainties -
Bayesian Statistical Framework”, Journal of Engineering Mechanics, Vol. 124,
pp. 455-461, 1998.

[5] Bendat, J.S. and Piersol, A.G., “Random Data. Analysis and Measurement
Procedures”, John Willey and Sons, Inc, 2000, New York City, NY., 2000.

[6] Bernal, D., Dyke, S.J., Lam H.-F., and Beck, J.L, “Phase II of the ASCE
Benchmark Study in SHM,” Proceedings of the 15th ASCE Engineering
Mechanics Conference, New York, New York, June 2-5, 2002.

[7] Bernal, D., “Load Vectors for Damage Localization”, Journal of Engineering
Mechanics, Vol. 128(1), pp. 7-14, 2002.

[8] Bernal, D. and Gunes, B., “Observer/Kalman and Subspace Identification of the
UBC Benchmark Structural Model”, Proceedings of the 14th ASCE Engineering
Mechanics Conference, Austin, Texas, May 21-24, 2000.

[9] Black, C.J. and Ventura, C.E. “Blind Test on Damage Detection of a Steel Frame
Structure,” Proceedings of the 16th International Modal Analysis Conf., Santa
Bar-bara, California, Feb. 2–5, 1998.

[10] Bleich, F. Bucking Strength of Metal Structures, McGraw–Hill, New York, 1952.

[11] Caicedo, J.M., Deaton, S., Docker, M. and Orton, S., “Field Mission 2001 Report:
The Turquish Earthquakes of 1999”, Mid America Earthquake Center - Report or
the 2001 Field Mission Fellowship, <http://mae.ce.uiuc.edu/Education/Student/
Graduate/Fieldmission/2001.htm>



154
[12] Caicedo, J.M., “Two Structural Health Monitoring Strategies Based on Global
Accleration Responses: Development, Implementation and Verification”, Msc.
Thesis. Washington University in St. Louis, May 2001.

[13] Caicedo, J.M., Dyke, S.J., “Phase II SHM Benchmark Studies: Application of the
NExT and ERA for damage detection”, Proceedings of the XXI IMAC Conference,
Kissimmee, Florida, February 3-6, 2003.

[14] Caicedo, J.M., Dyke, S.J. and Johnson, E.A., “Health Monitoring Based on
Component Transfer Function”, Proceedings of the 2000 International Conference
on Advaces in Structural Dynamics, Hong Kong, December 2000.

[15] Caicedo, J.M., Dyke, S.J. and Johnson, E.A., “NExT and ERA for Phase I of the
IASC-ASCE Benchmark Problem: Simulated Data.” Journal of Engineering
Mechanics, ASCE, (in press).

[16] Caicedo, J.M., Dyke, S.J., Turan, G. and Bergman, L.A. “Comparison of Modeling
Techniques for Dynamic Analysis of a Cable-Stayed Bridge.” Proceedings of the
Engineering Mechanics Conference, ASCE, Austin, Texas, May 21–23, 2000.

[17] Caicedo, J.M., Marulanda, J., Thomson, P., and Dyke, S.J. “Monitoring of Bridges
to Detect Changes in Structural Health,” Proceedings of the 2001 American
Control Conference, Arlington Virginia, June 2001.

[18] Çelebi, M., Final Proposal for Seismic Instrumentation of the Cable-Stayed
Girardeau (MO) Bridge, U.S. Geological Survey, 1998.

[19] Chadwell C.B., Fenves, G.L. and Mahin, S.A., “Cable-Stayed Bridge Behavior
Under Earthquake Excitation - A Case Study”, Proceedings of the Seventh U.S.
National Conference on Earthquake Engineering, Boston, Massachusetts, July 21-
25, 2002.

[20] Chang C.S. Study of Dynamic Characteristics of Aerolastic Systems Utilizing
Randomdec Signatures. NASA-CR-132563, Feb. 1975.

[21] Chang, F.K. Structural Health Monitoring, Proceedings of the 2nd International
Workshop on Structural Health Monitoring, Stanford University, Technomic
Publishing Co., Lancaster, PA, September 8-10, 1999.

[22] Ching, J., Beck, J.L., “Two-Stage Bayesian Structural Health Monitoring
Approach for Phase II ASCE Experimental Benchmark Studies”, Proceedings of
the 16th ASCE Engineering Mechanics Conference, Seattle, Washington, July 16-
18, 2003.



155
[23] Chopra, A.K., Dynamics of Structures, Prentince Hall Inc., Upper Saddle River,
NJ, 1995.

[24] Cole, H.A., “On-the-line analysis of Random Vibrations,” AIAA, Paper No. 68-
288, 1968.

[25] Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite
element Analysis, John Wiley & Sons Inc., New York City, NY, 1989.

[26] Corbin, M., Hera, A., and Hou, Z., “Locating Damage Regions Using Wavelet
Approach”, Proceedings of the 14th ASCE Engineering Mechanics Conference,
Austin, Texas, May 21-24, 2000.

[27] Dorf, R.C. and Bishop, R.H., Modern Control Systems, Addison-Wesley
Longman, Inc., Menlo Park, CA, 1998.

[28] Doebling, S.W., Farrar, C.R., Prime, M.B., and Schevitz, D.W. Damage
Identification and Health Monitoring of Structural and Mechanical Systems from
Changes in their Vibration Characteristics: A Literature Review, Los Alamos
Report, LA-13070-MS, May, 1996

[29] Doebling, S.W., Farrar, C.R., and Prime M.B., “A Summary Review of Vibration-
Based Damage Identification Methods”, The Shock and Vibration Digest, Vol
30(2), pp. 91- 105, 1998.

[30] Dyke, S.J., Bernal, D., Beck, J.L., and Ventura, C., “Introducing an Experimental
Benchmark Problem in Structural Health Monitoring,” Book of Abstracts, Joint
ASME/ASCE Mechanics and Materials Conference, Arlington, Virginia, June 27–
29, 2001.

[31] Dyke, S.J., Bernal, D., Beck, J.L., and Ventura, C., “Experimental Phase II of the
Structural Health Monitoring Benchmark Problem”, Proceedings of the 16th
Engineering Mechanics Conference, Seattle, Washington, July 16-18, 2003.

[32] Dyke, S.J., Bernal, D., Beck, J.L., and Ventura, C., “An Experimental Benchmark
Problem in Structural Health Monitoring,” Proceedings of the 3rd International
Workshop on Structural Health Monitoring, Stanford, California, September 12-
14, 2001.

[33] Dyke, S.J., Caicedo, J.M., and Johnson, E.A., “Monitoring of a Benchmark
Structure for Damage Detection,” Proceedings of the 14th ASCE Engineering
Mechanics Conference, Austin, Texas, May 21-24, 2000.



156
[34] Dyke, S.J., Caicedo, J.M., Turan, G., Bergman, L.A., and Hague, S., “Phase I
Benchmark Control Problem for Seismic Response of Cable-Stayed Bridges,”
Journal of Structural Engineering, Vol. 129(7), July 2003.

[35] Ernst, H.J. “Der E-Modul von Seilen unter Berucksichtigung des Durchhanges,”
Der Bauingenieur, Vol. 40(2), 1965.

[36] Farrar, C.R., Baker, W.E., Bell, T.M., Cone, K.M., Darling, T.W., Duffey, T.A.,
Eklund, A. and Migliory A., “Dynamic characterization and damage detection in
the I-40 brodge over the Rio Grande,” Los Alamos National Laboratory, Report
LA-12767-MS., 1994.

[37] Farrar, C.R. and James, G. H., “System identification from Ambient vibration
measurements on a bridge,” Journal of Sound and Vibration, Vol. 205(1) p 1-18,
1997.

[38] Fleming, J. F., “Computer Analysis of Structural Systems”, New York, McGraw
Hill, 1989.

[39] Ghanem, R. and Shinozuka, M., “Structural-System Identification. I: Theory”,
Journal of Engineering Mechanics, Vol. 121(2), February, 1995.

[40] Giraldo, D.F., Caicedo, J.M. and Dyke, S.J., “Experimental phase of the SHM
Benchmark Studies. Damage detection using NExT and ERA”, Proceedings of the
16th Engineering Mechanics Conference, Seattle, Washington, July 16-18, 2003.

[41] Hague, S. “Composite Design for Long Span Bridges.” Proceedings of the XV
ASCE Structures Congress, Portland, Oregon, 1997.

[42] Hou, Z.K., Noori, M. and St. Amanda, R. “Wavelet-based approach for Structural
Damage Detection,” Journal of Engineering Mechanics, Vol. 126(7), pp. 677-683,
2000.

[43] Huang, C.S., Yang, Y.B., Lu L.Y. and Chen, C.H., “Dynamic testing and system
identification of a multi-span highway bridge”, Earthquake Engineering and
Structural Dynamics. Vol. 28, pp. 857-878, 1999.

[44] IASC-ASCE Structural Health Monitoring Task Group Web Page: http://
wusceel.cive.wustl.edu/asce.shm/

[45] James, G.H., Carne, T.G., Lauffer J.P., Nord A.R., “Modal Testing using Natural
Excitation”, Proceedings of the 10th International Modal Analysis Conference,
Sant Diego, California, 1992.



157
[46] James, G.H., Carne, T.G. and Lauffer J.P., “The Natural Excitation Technique
(NExT) for Modal Parameter Extraction From Operating Wind Turbines,”
Experimental Mechanics Department, Sandia National Laboratories Report
SAND92-1666, Albuquerque, NM, Feb, 1993.

[47] James, G.H., Carne, T.G., Mayes, R.L., “Modal Parameter Extraction from Large
Operating Structures Using Ambient Excitation,” Proceedings of the 14th
International Modal Analysis Conference, Darbon, Michigan, 1996.

[48] Juang, J-N., “Applied System Identification”, Pearson Education, 1993.

[49] Juang, J.-N. and Pappa, R.S., “An Eigensystem Realization Algorithm for Modal
Parameter Identification and Model Reduction.” Journal of Guidance Control and
Dynamics, Vol 8, pp. 620–627, 1985.

[50] Juang, J.-N. and Pappa, R.S., “Effects of Noise on Modal Parameters Identified by
the Eigensystem Realization Algorithm," Journal of Guidance, Control, and
Dynamics, Vol. 9, No. 3, pp. 294-303, May-June 1986.

[51] Juang, J-N., Phan M. Q., “Identification and control of mechanical systems”,
Cambridge University Press, 2001.

[52] Johnson E.A., Lam H.F., Katafygiotis L. and Beck J., “A Benchmark Problem for
Structural Health Monitoring and Damage Detection”, Proceedings of the 14th
ASCE Engineering Mechanics Conference, Austin, Texas, May 21-24, 2000.

[53] Katafygiotis L.S., Lam H.F., Mickleborough N., “Application of a Statistical
Approach on a Benchmark Damage Detection Problem”, Proceedings of the 14th
ASCE Engineering Mechanics Conference, Austin, Texas, May 21-24, 2000.

[54] Kawashima, K., “Damage of Bridges Resulting from Fault Rupture in the 1999
Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan
Earthquake”, Struct Eng./Earthquake Eng., JSCE, Vol 19(2), pp. 179-197, 2002.

[55] Kim, C.-Y., Jung, D.-S., Kim, N.-S. and Yoon, J.-G., “Effect of Vehicle Mass on
the Measured Dynamic Characteristics of Bridges from Traffic-Induced Vibration
Tests”. Proceedings of the XIX IMAC Conference, Kissemmee, Florida, February
5-8, 2001.

[56] Kim, C.-Y., Kim, N.-S., Yoon, J.-G. and Jung, D.-S., “Monitoring System and
Ambient Vibration test of Namhae Suspension Bridge”. Proceedings of the SPIE’s
5th Annual International Symposium on Nondestructive Evaluation and Health
Monitoring of Aging Infrastructure, Newport Beach, California, March 5-9, 2000.



158
[57] Kim, S-E., Kim, Y., Choi, S-H., “Nonlinear Analysis of 3-D Steel Frames”, Thin-
Walled Structures, Vol. 39, pp. 445-461, 2001.

[58] Ko, J.M., Ni, Y.Q., Wang, J.Y., Zun, Z.G. and Zhou X.T., “Studies of Vibration-
Based Damage Detection of Three Cable-Supported Bridges in Hong Kong”,
Proceedings of the International Conference on Engineering and Technological
Sciences, Beijing, China, 2000.

[59] Lam, H.F., “Phase IIe of the IASC-ASCE Benchmark Study on Structural Health
Monitoring”, Proceedings of the XXI IMAC Conference, Kissimii, Florida,
February 3-6, 2003.

[60] Lew, J.S., Juang J.-N., and Longman, R.W., “Comparasion of Several System
Identification Methods for Flexible Structures”, Journal of Sound and Vibration,
Vol. 167, pp. 461-480, 1993.

[61] Lutes, L.D., Sarkani, S., “Stochastic Analysis of Structural and Mechanical
Vibrations”, Prentince Hall, New Jersey, 1997.

[62] Lynch, J.P., “Descentralization of Wireless Monitoring and Control Technologies
for Smart Civil Structures”, Ph.D. Dissertation, Department of Civil Engineering,
Stanford University, August 2002.

[63] Marwala, T. and Heyns, P.S., “Multiple-Criterion method for determining
strucural damage”. AIAA Journal Vol. 36(8), August 1998.

[64] Matlab® . The Math Works, Inc. Natick, Massachusetts, 1997.

[65] Nazmy A.S., Abdel-Ghaffar A. M., “Three-Dimensional Nonlinear Static Analysis
of Cable-Stayed bridges”, Computers & Structures, Vol. 34(2), pp. 257-271, 1990.

[66] New Jersey Department of Transportation, “Fiscal Year 2003 Capital Program”,
<http://www.state.nj.us/transportation/cpd/tcp/draft/Section2Activities/
FY03%20CP%20SEC%202%20Construction.PDF>.

[67] Ni, Y.Q., Zhou, X.T., Ko, J.M., Wang, B.S., “Vibration-Based Damage
Localization in Ting Kau Bridge Using Probabilistic Neural Networks”, Advances
in Structural Dynamics, Vol. 2, pp. 1069-1076, 2000.

[68] Non Destructive Evaluation Validation Center - Federal Highway Administration,
“Reliability of Visual Inspection for Highway Bridges”, <http://www.tfhrc.gov/
hnr20/nde/01020.htm>.



159
[69] Nolambi J.-M., Vantomme J., and Harri K. “Damage assessment in reinforced
concrete beams using eigenfrequencies and mode shape derivatives”. Engineering
Structures, Vol. 24, 2002.

[70] Papoulis, A., “Probability, random variables, and stochastic processes”, McGraw
Hill, New York, 1991.

[71] Pappa, R.S., Juang, J.-N, “Some Experiences with the Eigensystem Realization
Algorithm”, Journal of Sound and Vibration, pp. 30-34, January 1998.

[72] Pines, J. D. and Lovell, P.A., “Conceptual Framework of a Remote Wireless Health
Monitoring System for Large Civil Structures”, Smart Materials and Structures, Vol.
7, pp. 627-636, 1998.

[73] Qin, Q., Li H.B. and Qian L.Z., “Modal Identification of Tsing Ma Bridge by Using
Improved Eigensystem Realization Algorithm”, Journal of Sound and Vibration, Vol.
247, pp. 325-341, 2001.

[74] Quast, P., Spencer, B.F., Sain, M.K. and Dyke, S.J., Microcomputer Implementations
of Digital Control Strategies for Structural Response Reduction, Microcomputers in
Civil Engineering: Special Issue on New Directions in Computer Aided Structural
System Analysis, Design and Optimization, Vol. 10, pp. 13–25, 1995.

[75] Rao R., Mitra S.K., “Generalized Inverse of Matrices and its Applications”, John
Willey and Sons, New York, 1971.

[76] Rytter, A., Vibration Based Inspection of Civil Engineering Structures, Ph. D.
Dissertation, Department of Building Technology and Structural Engineering,
Aalborg University, Denmark, 1993.

[77] Salawu, O.S., “Detection of Structural Damage through Changes in Frequency: a
review”, Engineering Structures, Vol. 19(9), pp. 718–723, 1997.

[78] Seattle Department of Transportation, “Post-Earthquake Bridge Inspection”,
<http://www.cityofseattle.net/transportation/bridgeinfo.htm#seismic>

[79] Schmidt, H., “Resolution Bias Errors in Spectral Density, Frequency Response
and Coherence Function Measurements, I: General Theory”, Journal of Sound and
Vibration, Vol. 101(3), 1985.

[80] Schmidt, H., “Resolution Bias Errors in Spectral Density, Frequency Response
and Coherence Function Measuremente, III: Application to Second-Order Systems
(White Noise Excitation”, Journal of Sound and Vibration, Vol. 101(3), 1985



160
[81] Shinozuka, M. and Ghanem, R., “Structural System Identification. II:
Experimental Verification”, Journal of Engineering Mechanics, Vol. 121, No. 2.,
February 1995.

[82] Thomson, P., Marulanda Casas, J., Marulanda Arbelaes, J., Caicedo, J. M., “Real
Time Health Monitoring of Civil Infraestructures Systems in Colombia”,
Proceedings of the SPIE 6th Annual International Symposium on NDE for Health
Monitoring an Diagnostics, Newport Beach, California, 4-8 March, 2001.

[83] Turan, G., “Active Control of a Cable-stayed Bridge Against Earthquake
Excitations”, Ph.D. diss., University of Illinois, 2001.

[84] Wang, B.S., Liang, X.B., Ni, Y.Q. and Ko, J.M., “Comparative Study of Damage
Indices in Application to a Long-Span Suspension Bridge”, Advances in Structural
Dynamics, Vol. 2, pp. 1085-1092, 2000.

[85] Wang P.H., Tseng T.C., Yang C.G., “Initial Shape of Cable-Stayed Bridges”,
Computers & Structures, Vol. 46, No. 6, pp. 1095-1106, 1993.

[86] Wilson, J., and Gravelle W. “Modelling of a Cable-Stayed Bridge for Dynamic
Analysis,” Earthquake Engineering and Structural Dynamics, Vol. 20, pp. 707-
721, 1991



161

Vita

Juan M. Caicedo

EDUCATION

• Washington University, St. Louis, MO: D.Sc. Civil Engineering, 2003
• Washington University, St. Louis, MO: M.S. Civil Engineering, 2001
• Universidad del Valle, Cali, Colombia, South America: B.S. Civil Engineering, 1998

PUBLICATIONS

• Caicedo, J.M., Dyke S.J. and Johnson, E.A, “NExT and ERA for Phase I of the IASC-
ASCE Benchmark Problem: Simulated Data”, Journal of Engineering Mechanics (in
press).

• Dyke S.J., Caicedo J.M., Turan, G., Bergman, L.A. and Hague, S., “Phase I
Benchmark Control Problem for Seismic Response of Cable-Stayed Bridges”, Journal
of Structural Engineering, Vol. 129, No. 7, July 1 2003.

PROFESSIONAL HISTORY

• Research Assistant - Washington University Structural Control & Earthquake
Engineering Laboratory, St. Louis, MO (1999-present).

• Assistant Engineer - LECA Ingenieros Soc. L.T.D.A, Cali, Colombia, South America
(1997-1998)

• Undergraduate Teaching and Research Assistant - School of Civil Engineering,
Universidad del Valle, Cali, Colombia, South America (1996-1997).

AFFILIATIONS

• Earthquake Engineering Research Institute (2000-present)
• Chi-Epsilon, Civil Engineering Honor Society (2002-present)

August 2003



Short Title: SHM of Flexible Civil Structures Caicedo, D.Sc. 2003


	Structural Health Monitoring of Large Structures
	1.1 Review of Previously Developed SHM Techniques
	1.2 Implemented SHM Techniques for Large, Flexible Structures
	1.3 Overview

	Structural Health Monitoring Techniques
	2.1 Modal Identification
	2.1.1 Natural Excitation Technique
	2.1.2 Eigensystem Realization Algorithm

	2.2 Parameter Identification Technique
	2.2.1 Least Squares of Eigenvalue Problem

	2.3 Indices for damage identification
	2.3.1 Modal Assurance Criterion
	2.3.2 Mode Orthogonality

	2.4 Summary

	Verification through Benchmark Implementation
	3.1 Benchmark Problem Description
	3.1.1 Benchmark Structure

	3.2 First Numerical Phase
	3.3 Second Numerical Phase
	3.3.1 Identification Models
	3.3.2 Benchmark Results
	3.3.3 Blind Test

	3.4 Experimental Phase
	3.4.1 Experimental Setup
	3.4.2 Damage Patterns
	3.4.3 Benchmark Results

	3.5 Summary

	Sensitivity of Structural Behavior to Damage in Flexible Structures
	4.1 Modeling of Cable-Stayed Bridges
	4.1.1 Nonlinear Static Analysis
	4.1.2 Solution of the Nonlinear Problem

	4.2 Bill Emerson Memorial Bridge Model
	4.2.1 Bridge Description
	4.2.2 Finite Element Model
	4.2.3 Nonlinear Static Analysis

	4.3 Damage Sensitivity
	4.3.1 Sensitivity of Static Deflection to Damage
	4.3.2 Sensitivity of Natural Frequencies to Damage
	4.3.3 Sensitivity of the Mode Shapes to Damage

	4.4 Summary

	Numerical Implementation
	5.1 Identification Model
	5.2 Modal Identification
	5.2.1 State Space Representation
	5.2.2 Modal ID with NExT and ERA

	5.3 Damage Scenarios
	5.4 Summary

	Experimental Implementation
	6.1 Cable-Stayed Bridge Model
	6.2 Implementation
	6.2.1 Identification Model
	6.2.2 Experimental Setup
	6.2.3 Results

	6.3 Summary

	Conclusions and Future Work
	7.1 Future Work


