Skip navigation

Publications

Journals & Chapters

Jin, K., Vozka, P., Gentilcore, C., Kilaz, G., & Wang, N. H. L. (2021). Low-pressure hydrothermal processing of mixed polyolefin wastes into clean fuels. Fuel, 294, 120505.

Ding, Y., Harvey, D., & Wang, N.-H. L. (2020). Two-zone ligand-assisted displacement chromatography for producing high-purity praseodymium, neodymium, and dysprosium with high yield and high productivity from crude mixtures derived from waste magnets. Green Chemistry.

Jin, K., Vozka, P., Kilaz, G., Chen, W.-T., & Wang, N.-H. L. (2020). Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP). Fuel, 273, 117726.

Harvey, D., Ding, Y., & Wang, N.-H. L. (2019). Standing-wave Design of Three-Zone, open-loop non-isocratic SMB for purification. BMC Chemical Engineering, 1(1), 17. Open-Source Article: https://rdcu.be/b5OWM

Chen, W.-T., Jin, K., & Linda Wang, N.-H. (2019). Use of Supercritical Water for the Liquefaction of Polypropylene into Oil. ACS Sustainable Chemistry & Engineering7(4), 3749-3758.

Choi, H., Harvey, D., Ding, Y., & Wang, N.-H. L. (2018). Key parameters controlling the development of constant-pattern isotachic trains of two rare earth elements in ligand-assisted displacement chromatography. Journal of Chromatography A, 1563, 47–61.

Choi, H., Harvey, D., Ding, Y., & Wang, N.-H. L. (2018). Constant-pattern design method for the separation of ternary mixtures of rare earth elements using ligand-assisted displacement chromatography. Journal of Chromatography A, 1580, 49–62.

Mun, S., & Wang, N.-H. L. (2017). Improvement of the performances of a tandem simulated moving bed chromatography by controlling the yield level of a key product of the first simulated moving bed unit. Journal of Chromatography A, 1488, 104–112.

Choi, J.-H., Kang, M.-S., Lee, C., Wang, N.-H. L., & Mun, S. (2017). Design of simulated moving bed for separation of fumaric acid with a little fronting phenomenon. Journal of Chromatography A, 1491, 75–86.

Weeden Jr, G. S., & Wang, N.-H. L. (2017). Speedy standing wave design, optimization, and scaling rules of simulated moving bed systems with linear isotherms. Journal of Chromatography A, 1493, 19–40.

Park, C., Choi, J., Kyung, M., Seo, S., Jo, S.-E., Lee, K., Kim, P., Wang, N.-H. L., Jung, S., & Mun, S. (2017). Application of bacillus pumilus β-xylosidase reaction and simulated moving bed purification to efficient production of high-purity xylobiose from xylose. Journal of Industrial and Engineering Chemistry, 47, 431–438.

Stepinski, D. C., Youker, A. J., Krahn, E. O., Vandegrift, G. F., Chung, P.-L., & Wang, N.-H. L. (2017). Design of a Fission 99Mo Recovery Process and Implications toward Mo Adsorption Mechanism on Titania and Alumina Sorbents. Industrial & Engineering Chemistry Research, 56(10), 2815–2823.

Harvey, D., Weeden, G., & Wang, N.-H. L. (2017). Speedy standing wave design and simulated moving bed splitting strategies for the separation of ternary mixtures with linear isotherms. Journal of Chromatography A, 1530, 152–170.

Hong, S.-B., Choi, J.-H., Park, H., Wang, N.-H. L., Chang, Y. K., & Mun, S. (2017). Development of an efficient process for recovery of fucose in a multi-component mixture of monosugars stemming from defatted microalgal biomass. Journal of Industrial and Engineering Chemistry, 56, 185–195.

Lee, C., Choi, J.-H., Park, C., Wang, N.-H. L., & Mun, S. (2017). Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop. Journal of Chromatography A, 1527, 80–90.

Park, C., Nam, H.-G., Jo, S.-H., Wang, N.-H. L., & Mun, S. (2016). Continuous recovery of valine in a model mixture of amino acids and salt from Corynebacterium bacteria fermentation using a simulated moving bed chromatography. Journal of Chromatography A, 1435, 39–53.

Choi, J.-H., Park, H., Park, C., Wang, N.-H. L., & Mun, S. (2016). Highly efficient recovery of xylobiose from xylooligosaccharides using a simulated moving bed method. Journal of Chromatography A, 1465, 143–154.

Weeden Jr, G. S., Soepriatna, N. H., & Wang, N.-H. L. (2015). Method for efficient recovery of high-purity polycarbonates from electronic waste. Environmental Science & Technology, 49(4), 2425–2433.

Ling, L., & Wang, N.-H. L. (2015). Ligand-assisted elution chromatography for separation of lanthanides. Journal of Chromatography A, 1389, 28–38.

Kim, P.-H., Nam, H.-G., Park, C., Wang, N.-H. L., Chang, Y. K., & Mun, S. (2015). Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass. Journal of Chromatography A, 1406, 231–243.

Weeden Jr, G. S., & Wang, N.-H. L. (2015). Speedy standing wave design of size-exclusion simulated moving bed: Solvent consumption and sorbent productivity related to material properties and design parameters. Journal of Chromatography A, 1418, 54–76.

Weeden Jr, G. S., Ling, L., Soepriatna, N. H., & Wang, N.-H. L. (2015). Size-exclusion simulated moving bed for separating organophosphorus flame retardants from a polymer. Journal of Chromatography A, 1422, 99–116.

Soepriatna, N., Wang, N. H. L., & Wankat, P. C. (2015). Standing Wave Design of 2-Zone Thermal Simulated Moving Bed Concentrator (TSMBC). Industrial & Engineering Chemistry Research, 54(50), 12646–12663.

Soepriatna, N., Wang, N. H. L., & Wankat, P. C. (2015). Standing Wave Design and Optimization of Nonlinear Four-Zone Thermal Simulated Moving Bed Systems. Industrial & Engineering Chemistry Research, 54(42), 10419–10433.

Ma, S., Tsui, H.-W., Spinelli, E., Busacca, C. A., Franses, E. I., Wang, N.-H. L., Wu, L., Lee, H., Senanayake, C., & Yee, N. (2014). Insights into chromatographic enantiomeric separation of allenes on cellulose carbamate stationary phase. Journal of Chromatography A, 1362, 119–128.

Tsui, H.-W., Franses, E. I., & Wang, N.-H. L. (2014). Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: Modeling and implications for the adsorption mechanism. Journal of Chromatography A, 1328, 52–65.

Ling, L., Kao, L.-W., & Wang, N.-H. L. (2014). A new general method for designing affinity chromatography processes. Journal of Chromatography A, 1355, 86–99.

Ling, L., & Wang, N.-H. L. (2014). Phenomena in Liquid Chromatographic Systems with Reactions in the Mobile Phase. Advances in Chromatography, Volume 52, 52, 169.

Soepriatna, N., Wang, N. H. L., & Wankat, P. C. (2014). Standing wave design of a four-zone thermal SMB fractionator and concentrator (4-zone TSMB-FC) for linear systems. Adsorption, 20(1), 37–52.

Tsui, H.-W., Hwang, M. Y., Ling, L., Franses, E. I., & Wang, N.-H. L. (2013). Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris [(S)-α-methylbenzylcarbamate] sorbent. Journal of Chromatography A, 1279, 36–48.

Ling, L., Chung, P.-L., Youker, A., Stepinski, D. C., Vandegrift, G. F., & Wang, N.-H. L. (2013). Capture chromatography for Mo-99 recovery from uranyl sulfate solutions: Minimum-column-volume design method. Journal of Chromatography A, 1309, 1–14.

Chin, C. Y., & Wang, N. L. (2013). Simulated Moving‐Bed Technology for Biorefinery Applications. Separation and Purification Technologies in Biorefineries, 167–202.

Chin, C. Y., & Wang, N. L. (2013). Simulated Moving‐Bed Technology for Biorefinery Applications. Separation and Purification Technologies in Biorefineries, 167–202.

Tsui, H.-W., Wang, N.-H. L., & Franses, E. I. (2013). Chiral recognition mechanism of acyloin-containing chiral solutes by amylose tris [(S)-α-methylbenzylcarbamate]. The Journal of Physical Chemistry B, 117(31), 9203–9216.

Tsui, H.-W., Hwang, M. Y., Ling, L., Franses, E. I., & Wang, N.-H. L. (2013). Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris [(S)-α-methylbenzylcarbamate] sorbent. Journal of Chromatography A, 1279, 36–48.

Cremasco, M. A., & Wang, L. N.-H. (2012). Estimation of partition, free and specific diffusion coefficients of paclitaxel and taxanes in a fixed bed by moment analysis: experimental, modeling and simulation studies. Acta Scientiarum-Technology.

Tsui, H.-W., Kasat, R. B., Franses, E. I., & Wang, N. H. (2012). Mechanistic Studies of Chiral Discrimination in Polysaccharide Phases. Advances in Chromatography, 50, 47–91.

Kasat, R. B., Franses, E. I., & Wang, N. L. (2010). Experimental and computational studies of enantioseparation of structurally similar chiral compounds on amylose tris (3, 5‐dimethylphenylcarbamate). Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry, 22(6), 565–579.

Chung, P.-L., Bugayong, J. G., Chin, C. Y., & Wang, N.-H. L. (2010). A parallel pore and surface diffusion model for predicting the adsorption and elution profiles of lispro insulin and two impurities in gradient-elution reversed phase chromatography. Journal of Chromatography A, 1217(52), 8103–8120.

Chen, S., Adijanto, L., & Wang, N. L. (2010). In vitro folding of methionine‐arginine human lyspro‐proinsulin S‐sulfonate—Disulfide formation pathways and factors controlling yield. Biotechnology Progress, 26(5), 1332–1343.

Issued Patents

Ling, L. and N.-H. L. Wang, “Ligand-Assisted Elution Chromatography for Lanthanides Separation,” US Patent, US 10,597,751 B2, March 24, 2020.

Ling, L. and N.-H. L. Wang, “Ligand-Assisted Elution Chromatography for Lanthanides Separation,” Australia Patent, 2015289483.

Crawford, M., C. Yuan, and N.-H. L. Wang, “Tandem Redox Agent Folding Method Useful for Improving Proinsulin-S-Sulfonate Folding Yield,” US Patent 10,633,414.

Wang, N.-H. L, “Standing Wave Design Method for Achieving High-Purity and High-Yield Fractionation of Multicomponent Mixtures in SMB Systems with Adsorption Isotherms,” French Patent, 1,349,866.

Wang, N.-H. L, “Standing Wave Design Method for Achieving High-Purity and High-Yield Fractionation of Multicomponent Mixtures in SMB Systems with Adsorption Isotherms,” Italian Patent, 1,349,866.

Wang, N.-H. L, “Standing Wave Design Method for Achieving High-Purity and High-Yield Fractionation of Multicomponent Mixtures in SMB Systems with Adsorption Isotherms,” Spanish Patent, 1,349,866.

Wang, N.-H. L, “Standing Wave Design Method for Achieving High-Purity and High-Yield Fractionation of Multicomponent Mixtures in SMB Systems with Adsorption Isotherms,” United Kingdom Patent, 1,349,866.

Wang, N.-H.L., and Chin, C.Y. “Versatile Simulated Moving Bed Systems,” US Patent 7,141,172 B2, Nov. 28, 2006.

Wang, N.-H.L., Farrenburg, C., Xie, Y., and Hritzko, B.J. “Method and Apparatus for Separating a Component from a Mixture,” US Patent 6,843,854, January 18, 2005.

Featured in Green Chemistry