Relaxing the constant molar overflow assumption in distillation optimization. AIChE J. 2023;e18125. doi:10.1002/aic.18125
, M. , R. .T. J. Mathew, S. Narayanan, A. Jalan, L. Matthews, H. Gupta, R. Billimoria, C. S. Pereira, C. Goheen, M. Tawarmalani, & R. Agrawal. (2022). Advances in distillation: Significant reductions in energy consumption and carbon dioxide emissions for crude oil separation. Joule, 6(11), 2500–2512. https://doi.org/https://doi.org/10.1016/j.joule.2022.10.004
Minimum reflux calculation for multicomponent distillation in multi-feed, multi-product columns: Mathematical model. AIChE J. 2022; 68( 12):e17929. doi:10.1002/aic.17929
, R. .Which separation scenarios are advantageous for membranes or distillations? AIChE J. 2022; 68( 11):e17839. doi:10.1002/aic.17839
, M. .R. Tumbalam Gooty, R. Agrawal, M. Tawarmalani (2022). Advances in MINLP to Identify Energy-Efficient Distillation Configurations. Operations Research. https://doi.org/10.1287/opre.2022.2340
A. S. Nogaja, T. J. Mathew, M. Tawarmalani, R. Agrawal (2022). Identifying Heat-Integrated Energy-Efficient Multicomponent Distillation Configurations. Industrial and Engineering Chemistry Research, 61(37). https://doi.org/10.1021/acs.iecr.2c00870
J. A. Chavez Velasco, Z. Chen, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. Energy-efficient membrane cascades for industrial separations. Computer Aided Chemical Engineering, 50 (2021) 359-364. doi: 10.1016/B978-0-323-88506-5.50057-7.
T. J. Mathew, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. A Simple Criterion for Feasibility of Heat Integration between Distillation Streams Based on Relative Volatilities. Industrial & Engineering Chemistry Research, 60-28 (2021) 10286–10302. doi: 10.1021/acs.iecr.1c01036.
J. A. Chavez Velasco, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. Optimal design of membrane cascades for gaseous and liquid mixtures via MINLP. Journal of Membrane Science, 636 (2021) 119514. doi: 10.1016/j.memsci.2021.119514.
R. Tumbalam Gooty, J. A. Chavez Velasco, R. Agrawal. Methods to Assess Numerous Distillation Schemes for Binary Mixtures. Chemical Engineering Research and Design, 172 (2021) 1-20. doi: 10.1016/j.cherd.2021.05.022.
J. A. Chavez Velasco, M. Tawarmalani, R. Agrawal. Systematic Analysis Reveals Thermal Separations Are Not Necessarily Most Energy Intensive. Joule, 5-2 (2021) 330-343. doi: 10.1016/j.joule.2020.12.002.
T. J. Mathew, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. Quickly Assess Distillation Columns. Chemical Engineering Progress, December (2020) 27-34.
R. Agrawal, R. Tumbalam Gooty. Misconceptions about Efficiency and Maturity of Distillation. AIChE Journal, 66-8 (2020) e16294. doi: 10.1002/aic.16294
Z. Chen, R. Agrawal. Classification and Comparison of Dividing Walls for Distillation Columns. Processes, 8-6 (2020) 699. doi: 10.3390/pr8060699
T. J. Mathew, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. 110th Anniversary: Thermal Coupling via Heat Transfer: A Potential Route to Simple Distillation Configurations with Lower Heat Duty. Industrial & Engineering Chemistry Research, 58-47 (2019) 21671-21678. doi: 10.1021/acs.iecr.9b04689
Z. Jiang, Z. Chen, J. Huff, A. Shenvi, M. Tawarmalani, R. Agrawal. Global Minimization of Total Exergy Loss of Multicomponent Distillation Configurations. AIChE Journal, 65-11 (2019) e16737. doi: 10.1002/aic.16737
Z. Jiang, R. Agrawal. Process Intensification in Multicomponent Distillation: A Review of Recent Advancements. Chemical Engineering Research and Design, 147 (2019) 122-145. doi: 10.1016/j.cherd.2019.04.023
Z. Jiang, T. J. Mathew, H. Zhang, J. Huff, U. Nallasivam, M. Tawarmalani, R. Agrawal. Global Optimization of Multicomponent Distillation Configurations: Global Minimization of Total Cost for Multicomponent Mixture Separations. Computers and Chemical Engineering, 126 (2019) 249-262. doi: 10.1016/j.compchemeng.2019.04.009
R. Tumbalam Gooty, R. Agrawal, M. Tawarmalani. An MINLP Formulation for the Optimization of Multicomponent Distillation Configurations. Computers and Chemical Engineering, 125 (2019) 13-30. doi: 10.1016/j.compchemeng.2019.02.013
Z. Jiang, G. M. Ramapriya, M. Tawarmalani, R. Agrawal. Process Intensification in Multicomponent Distillation. Chemical Engineering Transactions, 69 (2018) 841-846. doi: 10.3303/CET1869141
R. Tumbalam Gooty, P. Mobed, M. Tawarmalani, R. Agrawal. (2018). Optimal Multicomponent Distillation Column Sequencing: Software and Case Studies. Computer Aided Chemical Engineering, 44 (2018) 223-228. doi: 10.1016/B978-0-444-64241-7.50032-X
G. M. Ramapriya, A. Selvarajah, L. E. Jimenez Cucaita, J. Huff, M. Tawarmalani, R. Agrawal. Short-Cut Methods versus Rigorous Methods for Performance-Evaluation of Distillation Configurations. Industrial & Engineering Chemistry Research, 57-22 (2018) 7726–7731. doi: 10.1021/acs.iecr.7b05214
Z. Jiang, G. M. Ramapriya, M. Tawarmalani, R. Agrawal. Minimum Energy of Multicomponent Distillation Systems Using Minimum Additional Heat and Mass Integration Sections. AIChE Journal, 64-9 (2018) 3410-3418. doi: 10.1002/aic.16189
G. M. Ramapriya, M. Tawarmalani, R. Agrawal, A Systematic Method to Synthesize all Dividing Wall Columns for n‐Component Separation: Part II. AIChE Journal, 64-2 (2018) 660-672. doi: 10.1002/aic.15963
G. M. Ramapriya, M. Tawarmalani, R. Agrawal, A Systematic Method to Synthesize all Dividing Wall Columns for n‐Component Separation: Part I. AIChE Journal, 64-2 (2018) 649-659. doi: 10.1002/aic.15964
U. Nallasivam, V.H. Shah, A.A. Shenvi, J. Huff, M. Tawarmalani, R. Agrawal, Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm, AIChE J. 62 (2016) 2071. doi: 10.1002/aic.15204.
G.M. Ramapriya, M. Tawarmalani, R. Agrawal, Thermal coupling links to liquid-only transfer streams: An enumeration method for new FTC dividing wall columns, AIChE J. 62 (2016) 1200. doi: 10.1002/aic.15053.
G. Madenoor Ramapriya, A.A. Shenvi, M. Tawarmalani, R. Agrawal, A New Framework for Combining a Condenser and Reboiler in a Configuration to Consolidate Distillation Columns, Ind. Eng. Chem. Res. 54 (2015) 10449-10464. doi: 10.1021/acs.iecr.5b01701.
V.H. Shah, R. Agrawal, Conceptual Design of Zeotropic Distillation Processes, in: A. Gorak, E. Sorensen (Eds.), Distill. Fundam. Princ. Vol. 1, Elsevier, (2014): pp. 271-303. doi: 10.1016/B978-0-12-386547-2.00007-7
G. Madenoor Ramapriya, M. Tawarmalani, R. Agrawal, New, Useful Dividing Wall Columns for Sustainable Distillation, in: Proc. 10th Int. Conf. Distill. Absorpt., Friedrichshafen, Germany, (2014): pp. 76-81.
G.M. Ramapriya, M. Tawarmalani, R. Agrawal, Modified Basic Distillation Configurations with Intermediate Sections for Energy Savings, AIChE J. 60 (2014) 1091. doi: 10.1002/aic.14324.
G.M. Ramapriya, M. Tawarmalani, R. Agrawal, Thermal Coupling Links to Liquid-Only Transfer Streams: A Path for New Dividing Wall Columns, AIChE J. 60 (2014) 2949. doi: 10.1002/aic.14468.
U. Nallasivam, V.H. Shah, A.A. Shenvi, M. Tawarmalani, R. Agrawal, Global Optimization of Multicomponent Distillation Configurations: 1. Need for a Reliable Global Optimization Algorithm, AIChE J. 59 (2013) 971. doi: 10.1002/aic.13875.
A.A. Shenvi, V.H. Shah, R. Agrawal, New Multicomponent Distillation Configurations with Simultaneous Heat and Mass Integration, AIChE J. 59 (2013) 272. doi: 10.1002/aic.13971.
A.A. Shenvi, V.H. Shah, J.A. Zeller, R. Agrawal, A Synthesis Method for Multicomponent Distillation Sequences with Fewer Columns, AIChE J. 58 (2012) 2479. doi: 10.1002/aic.12752.
V.H. Shah, R. Agrawal, Are All Thermal Coupling Links between Multicomponent Distillation Columns Useful from an Energy Perspective?, Ind. Eng. Chem. 50-3 (2011) 1770-1777. doi: 10.1021/ie101768c.
A.A. Shenvi, D.M. Herron, R. Agrawal, Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation, Ind. Eng. Chem. Res. 50-1 (2011) 119-130. doi: 10.1021/ie101698f.
V.H. Shah, R. Agrawal, A Matrix Method for Multicomponent Distillation Sequences, AIChE J. 56 (2010) 1759. doi: 10.1002/aic.12118.
Giridhar, R. Agrawal, Synthesis of distillation configurations: I. Characteristics of a good search space, Comput. Chem. Eng. 34 (2010) 73-83. doi: 10.1016/j.compchemeng.2009.05.003.
Giridhar, R. Agrawal, Synthesis of distillation configurations. II: A search formulation for basic configurations, Comput. Chem. Eng. 34 (2010) 84-95. doi: 10.1016/j.compchemeng.2009.05.004.
R. Pathare, R. Agrawal, Design of membrane cascades for gas separation, J. Memb. Sci. 364 (2010) 263-277. doi: 10.1016/j.memsci.2010.08.029.
V.H. Shah, R. Agrawal, Multicomponent Distillation Configurations with Large Energy Savings, in: Proc. Distill. Absorpt., (2010).
R.D. Noble, R. Agrawal, Separations research needs for the 21st century, Ind. Eng. Chem. Res. 44 (2005) 2887-2892. doi: 10.1021/ie0501475.
R. Agrawal, Synthesis of multicomponent distillation column configurations, AIChE J. 49 (2003) 379-401. doi: 10.1002/aic.690490210.
R. Agrawal, A.A. Brostow, D.M. Herron, M.J. Robert, Hybrid Cryogenic Liquefaction Processes, in: Proc. 21st Int. Congr. Refrig., Washington DC, (2003): p. ICR03090.
Z.T. Fidkowski, R. Agrawal, Multicomponent thermally coupled systems of distillation columns at minimum reflux, AIChE J. 47 (2001) 2713-2724. doi: 10.1002/aic.690471211.
R. Agrawal, D.M. Herron, Feed Pretreatment for Binary Distillation Efficiency Improvement, in: R. Gani, S.B. Jorgensen (Eds.), Eur. Symp. Comput. Aided Process Eng. – 11, Elsevier, (2001): p. 339-344. doi: 10.1016/S1570-7946(01)80052-3.
R. Agrawal, Multicomponent distillation columns with partitions and multiple reboilers and condensers, Ind. Eng. Chem. Res. 40 (2001) 4258-4266. doi: 10.1021/ie000315n.
R. Agrawal, Separations: Perspective of a process developer/designer, AIChE J. 47 (2001) 967-971. doi: 10.1002/aic.690470503.
R. Agrawal, Thermally coupled distillation with reduced number of intercolumn vapor transfers, AIChE J. 46 (2000) 2198-2210. doi: 10.1002/aic.690461112.
R. Agrawal, Multieffect distillation for thermally coupled configurations, AIChE J. 46 (2000) 2211-2224. doi: 10.1002/aic.690461113.
R. Agrawal, Z.T. Fidkowski, Improving Efficiency of Distillation with New Thermally Coupled Configurations of Columns, in: Found. Comput. Process Des. AIChE Symp. Ser. No. 323, Vol. 96, (2000): p. 381.
R. Agrawal, A method to draw fully thermally coupled distillation column configurations for multicomponent distillation, Chem. Eng. Res. Des. 78 (2000) 454-464. doi: 10.1205/026387699526449.
R. Agrawal, D.M. Herron, Air Liquefaction: Distillation, Encycl. Sep. Sci. (2000) 1895.
R. Agrawal, Z.T. Fidkowski, More Operable Arrangements of Thermally Coupled Distillation Column, in: M. D. Pritchett, H. Z. Kister (Eds.), Distill. Horizons New Millenn. AIChE Top. Conf. Prepr., (1999): p. 105.
R. Agrawal, Z.T. Fidkowski, Thermodynamically efficient systems for ternary distillation, Ind. Eng. Chem. Res. 38 (1999) 2065-2074. doi: 10.1021/ie980531k.
R. Agrawal, D.M. Herron, Production of Low-Purity Oxygen in the Next Millennium, in: 20th IIR Proc., (1999).
R. Agrawal, Z.T. Fidkowski, New thermally coupled schemes for ternary distillation, AIChE J. 45 (1999) 485-496. doi: 10.1002/aic.690450306.
R. Agrawal, More Operable Fully Thermally Coupled Distillation Column Configurations for Multicomponent Distillation, Chem. Eng. Res. Des. 77 (1999) 543-553. doi: 10.1205/026387699526449.
R. Agrawal, Z.T. Fidkowski, Ternary distillation schemes with partial reboiler or partial condenser, Ind. Eng. Chem. Res. 37 (1998) 3455-3462. doi: 10.1021/ie980063e.
R. Agrawal, Z.T. Fidkowski, Improved direct and indirect systems of columns for ternary distillation, AIChE J. 44 (1998) 823-830. doi: 10.1002/aic.690440407.
R. Agrawal, Z.T. Fidkowski, Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations, Ind. Eng. Chem. Res. 37 (1998) 3444-3454. doi: 10.1021/ie980062m.
R. Agrawal, Z.T. Fidkowski, More operable arrangements of fully thermally coupled distillation columns, AIChE J. 44 (1998) 2565-2568. doi: 10.1002/aic.690441124.
R. Agrawal, J. Xu, Advanced Cryogenic Air Separation Plants for Carbonaceous Fuel-Based Ammonia Synthesis, in: Cryog. Refrig. Proc. ICCR-98, Hangzhou, China, (1998): p. 538.
R. Agrawal, D.M. Herron, Intermediate Reboiler and Condenser Arrangement for Binary Distillation Columns, AIChE J. 44 (1998) 1316-1324. doi: 10.1002/aic.690440609.
R. Agrawal, D.M. Herron, Efficient Use of an Intermediate Reboiler or Condenser in a Binary Distillation, AIChE J. 44 (1998) 1303-1315. doi: 10.1002/aic.690440608.
R. Agrawal, D.M. Herron, Optimal thermodynamic feed conditions for distillation of ideal binary mixtures, AIChE J. 43 (1997) 2984-2996. doi: 10.1002/aic.690431111.
R. Agrawal, H.C. Rowles, G.E. Kinard, Cryogenic Distillation, in: D. M. Ruthven (Ed.), Encycl. Sep. Technol., Wiley, New York, (1997): p. 379.
R. Agrawal, D.W. Woodward, A.K. Modi, Co-production of High Purity Products Using Thermally-Linked Columns, Distill. Absorpt. 1997, Inst. Chem. Eng. Symp. Ser. 142 (1997) 511.
R. Agrawal, A simplified method for the synthesis of gas separation membrane cascades with limited numbers of compressors, Chem. Eng. Sci. 52 (1997) 1029-1044. doi: 10.1016/S0009-2509(96)00376-4.
R. Agrawal, Z.T. Fidkowski, J. Xu, Prefractionation to reduce energy consumption in distillation without changing utility temperatures, AIChE J. 42 (1996) 2118-2127. doi: 10.1002/aic.690420804.
R. Agrawal, J.G. Xu, Gas-separation membrane cascades utilizing limited numbers of compressors, AIChE J. 42 (1996) 2141-2154. doi: 10.1002/aic.690420806.
R. Agrawal, Z.T. Fidgowski, On the use of intermediate reboilers in the rectifying and condensers in the stripping section of a distillation column, Ind. Eng. Chem. Res. 35 (1996) 2801-2807. doi: 10.1021/ie9601312.
R. Agrawal, Production of Ultra-high Purity Nitrogen Free of Light Impurities, in: Proc. MUST-96, Munich Meet. Air Sep. Technol., (1996): p. 25.
R. Agrawal, J. Xu, A Systematic Procedure for Drawing Gas Separation Membrane Cascades with Limited Number of Compressors, in: Proc. ICOM-96, 1996 Int. Congr. Membr. Membr. Process., Yokohama, Japan, (1996): p. 288.
R. Agrawal, Synthesis of Distillation Column Configurations for a Multicomponent Separation, Ind. Eng. Chem. Res. 35 (1996) 1059-1071. doi: 10.1021/ie950323h.
J. Xu, R. Agrawal, Gas separation membrane cascades I. One-compressor cascades with minimal exergy losses due to mixing, J. Memb. Sci. 112 (1996) 115-128. doi: 10.1016/0376-7388(95)00272-3.
J. Xu, R. Agrawal, Membrane Separation Process Analysis and Design Strategies Based on Thermodynamic Efficiency of Permeation, Chem. Eng. Sci. 51 (1996) 365-385. doi: 10.1016/0009-2509(95)00262-6.
R. Agrawal, Membrane cascade schemes for multicomponent gas separation, Ind. Eng. Chem. Res. 35 (1996) 3607-3617. doi: 10.1021/ie960160c.
R. Agrawal, J. Xu, Gas separation membrane cascades II. Two-compressor cascades, J. Memb. Sci. 112 (1996) 129-146. doi: 10.1016/0376-7388(95)00273-1.
J. Xu, R. Agrawal, Local Thermodynamic Efficiency of Permeation and Strategies for Efficiency Improvement for Membrane Gas Separation, in: 1995 Top. Conf. Recent Dev. Futur. Oppor. Sep. Technol. Am. Inst. Chem. Eng., (1995): p. 351.
R. Agrawal, Production of Ultrahigh-Purity Oxygen: A Distillation Method for the Coproduction of the Heavy Key Component Stream Free of Heavier Impurities, Ind. Eng. Chem. Res. 34 (1995) 3947-3955. doi: 10.1021/ie00038a034.
Z. T. Fidkowski, R. Agrawal, Utilization of Waste Heat Stream in Distillation, Ind. Eng. Chem. Res. 34 (1995) 1287-1293. doi: 10.1021/ie00043a033.
R. Agrawal, D.W. Woodward, Efficient Process to Produce Tonnage Nitrogen, in: 19th Int. Congr. Refrig., The Hauge, The Netherlands, (1995): p. 1011.
R. Agrawal, J. Xu, Separation devices for gas mixing, AIChE J. 41 (1995) 2585-2602. doi: 10.1002/aic.690411208.
R. Agrawal, T.F. Yee, Heat Pumps for Thermally Linked Distillation Columns: An Exercise for Argon Production from Air, Ind. Eng. Chem. Res. 33 (1994) 2717-2730. doi: 10.1021/ie00035a023.
R. Agrawal, D.W. Woodward, T.F. Yee, Argon production from air distillation: Use of a heat pump in a ternary distillation with a side rectifier, Gas Sep. Purif. 8 (1994) 37-43. doi: 10.1016/0950-4214(94)85006-2.
R. Agrawal, D.W. Woodward, K.A. Ludwig, D.L. Bennett, Impact of Low Pressure Drop Structure Packing on Air Distillation, in: Inst. Chem. Eng. Symp. Ser. No. 128, (1992): p. 125.
R. Agrawal, R.M. Thorogood, Production of medium pressure nitrogen by cryogenic air separation, Gas Sep. Purif. 5 (1991) 203-209. doi: 10.1016/0950-4214(91)80025-Z.
R. Agrawal, D.W. Woodward, Efficient Cryogenic Nitrogen Generators – An Exergy Analysis, Gas Sep. Purif. 5 (1991) 139-150. doi: 10.1016/0950-4214(91)80012-T.
R. Agrawal, D.W. Woodward, Impact of Low Pressure Drop Structured Packing on Argon Production and Purification from Air, in: Proc. XVIIIth Int. Congr. Refrig., Montreal, Canada, (1991): p. 162.
R. Agrawal, W.T. Kleinberg, Efficient Processes to Produce Ultra High Purity Nitrogen from Air, in: Proc. XVIIIth Int. Congr. Refrig., Montreal, Canada, (1991): p. 156.
J.S. Choe, R. Agrawal, S.R. Auvil, Membrane/Adsorption Hybrids for Gas Separation, in: AIChE Symp. Ser., Houston, (1991).
R. Agrawal, S.R. Auvil, J.S. Choe, D.W. Woodward, Membrane/cryogenic hybrid scheme for argon production from air, Gas Sep. Purif. 4 (1990) 75-80. doi: 10.1016/0950-4214(90)80031-F.
J.S. Choe, R. Agrawal, S.R. Auvil, R. Srinivasan, R.M. Thorogood, Membrane/Adsorption Hybrids for Gas Separation, in: Proc. 1990 Int. Congr. Membr. Membr. Process., (1990): p. 995.
R. Agrawal, D.W. Woodward, W.T. Kleinberg, K.B. Wilson, Efficient Processes to Produce Nitrogen by Cryogenic Air Separation, in: Proc. Low Temp. Cryog. Conf., Southampton, U.K., (1990): p. 4.
J.M. Abrardo, R. Agrawal, A.R. Smith, D.W. Woodward, Oxygen Plants for IGCC, in: C. F. Gottzmann, L. C. Kun, K. D. Timmerhaus, L. Wenzel (Eds.), Seventh Intersoc. Cryog. Symp., (1989): p. 37.
R. Agrawal, D.C. Erickson, D.W. Woodward, High Efficiency Processes for Cryogenic Air Separation, in: C. F. Gottzmann, L. C. Kun, K. D. Timmerhaus, L. Wenzel (Eds.), Seventh Intersoc. Cryog. Symp., (1989): p. 33.
J.S. Choe, R. Agrawal, S.R. Auvil, T.R. White, Membrane/Cryogenic Hybrid Systems for Helium Purification, in: Proc. Sixty-Seventh Gas Process. Assoc. Annu. Conv., Dallas, Texas, (1988): p. 251.
R. Agrawal, S.R. Auvil, S.P. DiMartino, J.S. Choe, J.A. Hopkins, Membrane/cryogenic hybrid processes for hydrogen purification, Gas Sep. Purif. 2 (1988) 9-15. doi: 10.1016/0950-4214(88)80036-7.
D. L. Bennett, R. Agrawal, P. J. Cook, New Pressure Drop Correlation for Sieve Tray Distillation Columns, AIChE J. 29 (1983) 434-442. doi: 10.1002/aic.690290313.