2024
S. Agarwal, K.C. Vincent, R. Agrawal. Quantitative scales for haliphilicity of metals: Tailoring the halide affinity of alkaline earth metals to synthesize chalcogenide perovskite BaMS3 (M=Ti, Zr, and Hf) and Cu2BaSnS4 compounds. ACS Applied Energy Materials (2024) doi: 10.1021/acsaem.4c02205.
S. Agarwal, K.C. Vincent, J.W. Turnley, D.C. Hayes, M.C. Uible, I. Duran, A.S.M. Canizales, S. Khandelwal, I. Panicker, Z. Andoh, R.M. Spilker, Q. Ma, L. Huang, S. Hwang, K. Kisslinger, S. Svatek, E. Antolin, S.C. Bart, R. Agrawal. Breaking barriers in chalcogenide perovskite synthesis: A generalized framework for the fabrication of BaMS3 (M=Ti, Zr, Hf) materials. Adv. Funct. Mater. (2024) doi: 10.1002/adfm.202405416.
A.A. Pradhan, S. Agarwal, K.C. Vincent, D.C. Hayes, J.M. Peterson, J.W. Turnley, R.M. Spilker, M.C. Uible, S.C. Bart, L. Huang, K. Kisslinger, R. Agrawal. Emergence of Ruddlesden-Popper phases and other pitfalls for moderate temperature solution-deposited chalcogenide perovskites. Materials Chemistry Frontiers (2024) doi: 10.1039/D4QM00441H.
J. W. Turnley, A. Grant, V.Z. Schull, D. Cammarano, J. Sesmero, R. Agrawal. The Viability of Photovoltaics on Agricultural Land: Can PV Solve the Food vs Fuel Debate? J. Cleaner Production (2024) doi: 10.1016/j.jclepro.2024.143191.
J. W. Turnley, S. Agarwal, R. Agrawal. Rethinking tolerance factor analysis for chalcogenide perovskites. Materials Horizons (2024) doi: 10.1039/D4MH00689E.
K.C. Vincent*, S. Agarwal*, Z. Fan, A.S.M. Canizales, R. Agrawal. Expanding the horizons for viable precursors and liquid fluxes for the synthesis of BaZrS3 and related compounds. J. Mater. Chem. C (2024) doi: 10.1039/D4TC02287D
J. W. Turnley, R. Agrawal. Solution processed metal chalcogenide semiconductors for inorganic thin film photovoltaics. Chem. Comm. (2024) doi: 10.1039/D4CC01057D.
I. C. Prades, J. W. Turnley, P. Benitez, C. Lopez, J. M. A. Lopez, D. P. Zarceno, J. Puigdollers, M. Placidi, C. Cazorla, R. Agrawal, E. Saucedo. Novel synthesis of semiconductor chalcohalide anti-perovskites by low-temperature molecular precursor ink deposition methodologies. J. Mater. Chem. C (2024) doi: 10.1039/D3TC04410F.
D. C. Hayes, S. A. Langdon, R. M. Spilker, R. Agrawal. Carbon Impurity Minimization of Solution-Processed, Thin-Film Photovoltaics via Ligand Engineering of CuInS2 Nanoparticles. ACS Appl. Energy Mater. (2024) doi: 10.1021/acsaem.3c01922.
2023
A. Ibrahim, S. Lie, J. M. R. Tan, R. Swope, A. G. Medaille, S. Hadke, E. Saucedo, R. Agrawal, L. H. Wong. Efficiency enhancement and doping type inversion in Cu2CdSnS4 solar cells by Ag substitution. J. Mater. Chem. A (2023) doi: 10.1039/D3TA04529C.
S. Agarwal, K. G. Weideman, D. J. Rokke, K. C. Vincent, D. Zemlyanov, R. Agrawal. Enhancing the optoelectronic properties of solution-processed AgInSe2 thin films for application in photovoltaics. J. Mater. Chem. C (2023) doi: 10.1039/D3TC03540A.
J. W. Turnley, S. D. Deshmukh, V. M. Boulos, R. G. Ellis, N. J. LiBretto, J. K. Liu, J. T. Miller, H. I. Kenttämaa, R. Agrawal. Molecular Precursor Approach to Sulfur-Free CuInSe2: Replacing Thiol Coordination in Soluble Metal Complexes. ACS Omega (2023) doi: 10.1021/acsomega.3c07515.
A. A. Pradhan,C. Yao, S. A. McClary, K. G. Weideman, D. D. Blach, S. Khandelwal, J. Andler, D. J. Rokke, L. Huang, C. Handwerker, Y. Yan, R. Agrawal. Tuning the optoelectronic properties of enargite (Cu3AsS4) solar cells by Ag alloying: A DFT-informed synthesis. Appl. Phys. Lett. (2023) doi: 10.1063/5.0170314.
S. Agarwal, J. W. Turnley, A. A. Pradhan, R. Agrawal. Moderate Temperature Sulfurization and Selenization of Highly Stable Metal Oxides: An Opportunity for Chalcogenide Perovskite. J. Mater. Chem. C. (2023) doi: 10.1039/D3TC02716C.
J. W. Turnley, S. D. Deshmukh, V. M. Boulos, R. Spilker, C. J. Breckner, K. Ng, J. K, Liu, J. T. Miller, H. I. Kenttämaa, R. Agrawal. A selenium-based “alkahest”: reactive dissolutions of metals and metal compounds with n-alkylammonium polyselenide solutions. Inorg. Chem. Front. (2023) doi: 10.1039/D3QI01632C.
Relaxing the constant molar overflow assumption in distillation optimization. AIChE J. 2023;e18125. doi:10.1002/aic.18125
, M. , R. .A. A. Pradhan, M. C. Uible, S. Agarwal, J. W. Turnley, S. Khandelwal, J. M. Peterson, D. D. Blach, R. N. Swope, L. Huang, S. C. Bart, R. Agrawal. Synthesis of BaZrS3 and BaHfS3 Chalcogenide Perovskite Films Using Single-Phase Molecular Precursors at Moderate Temperatures. Angew. Chem. Int. Ed. (2023) doi: 10.1002/anie.202301049
K. C. Vincent, S. Agarwal, J. W. Turnley, R. Agrawal. Liquid Flux-Assisted Mechanism for Modest Temperature Synthesis of Large-Grain BaZrS3 and BaHfS3 Chalcogenide Perovskites. Adv. Energy Sustainability Res. (2023) doi: 10.1002/aesr.202300010
2022
T. J. Mathew, S. Narayanan, A. Jalan, L. Matthews, H. Gupta, R. Billimoria, C. S. Pereira, C. Goheen, M. Tawarmalani, & R. Agrawal. (2022). Advances in distillation: Significant reductions in energy consumption and carbon dioxide emissions for crude oil separation. Joule, 6(11), 2500–2512. https://doi.org/https://doi.org/10.1016/j.joule.2022.10.004
Minimum reflux calculation for multicomponent distillation in multi-feed, multi-product columns: Mathematical model. AIChE J. 2022; 68( 12):e17929. doi:10.1002/aic.17929
, R. .Which separation scenarios are advantageous for membranes or distillations? AIChE J. 2022; 68( 11):e17839. doi:10.1002/aic.17839
, M. .A. S. Nogaja, T. J. Mathew, M. Tawarmalani, R. Agrawal (2022). Identifying Heat-Integrated Energy-Efficient Multicomponent Distillation Configurations. Industrial and Engineering Chemistry Research, 61(37). https://doi.org/10.1021/acs.iecr.2c00870
J. W. Turnley, K. C. Vincent, A. A. Pradhan, I. Panicker, R. Swope, M. C. Uible, S. C. Bart, R. Agrawal. Solution Deposition for Chalcogenide Perovskites: A Low-Temperature Route to BaMS3 Materials (M = Ti, Zr, Hf). J. Am. Chem. Soc. (2022) doi: 10.1021/jacs.2c06985
R. Tumbalam Gooty, R. Agrawal, M. Tawarmalani (2022). Advances in MINLP to Identify Energy-Efficient Distillation Configurations. Operations Research. https://doi.org/10.1287/opre.2022.2340
S. Suresh, D. J. Rokke, A. A. Drew, E. Alruqobah, R. Agrawal, A. R. Uhl. Extrinsic Doping of Ink-Based Cu(In,Ga)(S,Se)2-Absorbers for Photovoltaic Applications. Adv. Energy Mater. (2022) doi: 10.1002/aenm.202103961
S. D. Deshmukh, C. K. Miskin, A. A. Pradhan, K. Kisslinger, R. Agrawal. Solution Processed Fabrication of Se-Te Alloy Thin Films for Application in PV Devices. ACS Appl. Energy Mater. (2022) 5, 3, 3275-3281. doi: 10.1021/acsaem.1c03896
S. D. Deshmukh, K. G. Weideman, R. G. Ellis, K. Kisslinger, R. Agrawal. Enabling fine-grain free 2-micron thick CISe/CIGSe film fabrication via a non-hydrazine based solution processing route. Mater. Adv. (2022) doi: 10.1039/D2MA00095D
J. Andler, X. Hu, S. A. McClary, R. Agrawal, C. A. Handwerker. Analysis of enargite thin films synthesized from carbon-containing and novel carbon-free processing methods. Materials Science in Semiconductor Processing. (2022) 143, 106512. doi: 10.1016/j.mssp.2022.106512.
2021
R. G. Ellis, S. D. Deshmukh, J. W. Turnley, D. S. Sutandar, J. P. Fields, R. Agrawal. Direct Synthesis of Sulfide-Capped Nanoparticles for Carbon-Free Solution-Processed Photovoltaics. ACS Appl. Nano Mater. (2021) 4, 11, 11466-11472. doi: 10.1021/acsanm.1c02561.
S. D. Deshmukh, K. G. Weideman, C. K. Miskin, K. Kisslinger, R. Agrawal. Solution Phase Growth and Ion Exchange in Microassemblies of Lead Chalcogenide Nanoparticles. ACS Omega, 6 (2021) 21350-21358. doi: 10.1021/acsomega.1c01589.
J. A. Chavez Velasco, Z. Chen, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. Energy-efficient membrane cascades for industrial separations. Computer Aided Chemical Engineering, 50 (2021) 359-364. doi: 10.1016/B978-0-323-88506-5.50057-7.
T. J. Mathew, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. A Simple Criterion for Feasibility of Heat Integration between Distillation Streams Based on Relative Volatilities. Industrial & Engineering Chemistry Research, 60-28 (2021) 10286–10302. doi: 10.1021/acs.iecr.1c01036.
J. A. Chavez Velasco, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. Optimal design of membrane cascades for gaseous and liquid mixtures via MINLP. Journal of Membrane Science, 636 (2021) 119514. doi: 10.1016/j.memsci.2021.119514.
R. Tumbalam Gooty, J. A. Chavez Velasco, R. Agrawal. Methods to Assess Numerous Distillation Schemes for Binary Mixtures. Chemical Engineering Research and Design, 172 (2021) 1-20. doi: 10.1016/j.cherd.2021.05.022.
J. A. Chavez Velasco, M. Tawarmalani, R. Agrawal. Systematic Analysis Reveals Thermal Separations Are Not Necessarily Most Energy Intensive. Joule, 5-2 (2021) 330-343. doi: 10.1016/j.joule.2020.12.002.
2020
T. J. Mathew, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. Quickly Assess Distillation Columns. Chemical Engineering Progress, December (2020) 27-34.
R. Agrawal, R. Tumbalam Gooty. Misconceptions about Efficiency and Maturity of Distillation. AIChE Journal, 66-8 (2020) e16294. doi: 10.1002/aic.16294
Z. Chen, R. Agrawal. Classification and Comparison of Dividing Walls for Distillation Columns. Processes, 8-6 (2020) 699. doi: 10.3390/pr8060699
S. D. Deshmukh, L. F. Easterling, J. M. Manheim, N. J. LiBretto, K. G. Weideman, J. T. Miller, H. I. Kenttämaa, R. Agrawal, Analyzing and Tuning the Chalcogen-Amine-Thiol Complexes for Tailoring of Chalcogenide Synthesis, Inorg. Chem. (2020). doi: 10.1021/acs.inorgchem.0c00597
R. G. Ellis, J. W. Turnley, D. J. Rokke, J. P. Fields, E. H. Alruqobah, S. D. Deshmukh, K. Kisslinger, R. Agrawal, Hybrid Ligand Exchange of Cu(In,Ga)2 Nanoparticles for Carbon Impurity Removal in Solution-Processed Photovoltaics, Chem. Mater. (2020). doi: 10.1021/acs.chemmater.0c00966
E. H. Alruqobah, R. Agrawal, Potassium Treatments for Solution-Processed Cu(In,Ga)(S,Se)2 Solar Cells, ACS Appl. Energy Mater. (2020). doi: 10.1021/acsaem.0c00422
Ginley, D.; Ager, J.; Agrawal, R.; Alam, M. A.; Arora, B. M.; Avasthi, S.; Basak, D.; Bhargava, P.; Biswas, P.; Bora, B.; Braunecker, W. A.; Buonassisi, T.; Dhage, S.; Dhere, N.; Garner, S.; Hu, X.; Jhunjhunwala, A.; Kabra, D.; Kavaipatti, B.; Kazmerski, L.; Kottantharayil, A.; Kumar, R.; Lo, C.; Mani, M.; Nair, P. R.; Narsamma, L.; Olson, D. C.; Pal, A. J.; Raghavan, S.; Ramamurthy, P.; Sarada, B.; Sarkar, S.; Sastry, O. S.; Sridhar, H.; Tamizmani, G.; Urban, J.; van Hest, M.; Vasi, J.; Wang, Y.; Wu, Y. Sustainable Photovoltaics; Springer, Cham, 2020; pp 25–85. doi:10.1007/978-3-030-33184-9_2
S. A. McClary, R. Agrawal, Synthesis and characterization of semiconducting sinnerite (Cu6As4S9) thin films. MRS Communications, 1-6. (2020) doi:10.1557/mrc.2020.1
2019
X. Hu, S. Prtchett-Montavon, C. Handwerker, R. Agrawal. Reaction pathways and optoelectronic characterization of single-phase Ag2ZnSnS4 nanoparticles. Journal of Materials Research, 34 (22), 3810-3818. doi: 10.1557/jmr.2019.328
T. J. Mathew, R. Tumbalam Gooty, M. Tawarmalani, R. Agrawal. 110th Anniversary: Thermal Coupling via Heat Transfer: A Potential Route to Simple Distillation Configurations with Lower Heat Duty. Industrial & Engineering Chemistry Research, 58-47 (2019) 21671-21678. doi: 10.1021/acs.iecr.9b04689
S. D. Deshmukh,* R. G. Ellis,* D. S. Sutandar, D. J. Rokke, R. Agrawal, Versatile Colloidal Syntheses of Metal Chalcogenide Nanoparticles from Elemental Precursors Using Amine-Thiol Chemistry, Chem. Mater. (2019). doi: 10.1021/acs.chemmater.9b03401
C. K. Miskin,* Y. Li,* A. Perna, R. G. Ellis, E. K. Grubbs, P. Bermel, R. Agrawal, Sustainable co-production of food and solar power to relax land-use constraints, Nat. Sustain. (2019). doi: 10.1038/s41893-019-0388-x
T. K. Todorov, H. W. Hillhouse, S. Aazou, Z. Sekkat, O. Vigil-Galán, S. D. Deshmukh, R. Agrawal, S. Bourdais, M. Valdes, P. Arnou, D. B. Mitzi, P. J. Dale, Solution-based synthesis of kesterite thin film semiconductors, J. Phys. Energy (2019). doi: 10.1088/2515-7655/ab3a81
X. Zhao,* S. D. Deshmukh,* D. J. Rokke, G. Zhang, Z. Wu, J. T. Miller, R. Agrawal, Investigating Chemistry of Metal Dissolution in Amine–Thiol Mixtures and Exploiting It toward Benign Ink Formulation for Metal Chalcogenide Thin Films, Chem. Mater. (2019). doi: 10.1021/acs.chemmater.9b01566
S. McLeod, E. Alruqobah, R. Agrawal, Liquid assisted grain growth in solution processed Cu(In,Ga)(S,Se)2 Sol. Energy Mater. Sol. Cells (2019). doi: 10.1016/j.solmat.2019.02.020
C. K. Miskin,* S. D. Deshmukh,* V. Vasiraju, K. Bock, G. Mittal, A. Dubois-Camacho, S. Vaddiraju, R. Agrawal, Lead Chalcogenide Nanoparticles and Their Size-Controlled Self-Assemblies for Thermoelectric and Photovoltaic Applications, ACS Appl. Nano Mater. (2019). doi: 10.1021/acsanm.8b02125
X. Yin,* S. A. McClary,* Z. Song, D. Zhao, B. Graeser, C. Wang, N. Shrestha, X. Wang, C. Chen, C. Li, K. K. Subedi, R. J. Ellingson, W. Tang, R. Agrawal, Y. Yan, A Cu3PS4 nanoparticle hole selective layer for efficient inverted perovskite solar cells, J. Mater. Chem. A (2019). doi: 10.1039/C8TA12100A
Z. Jiang, Z. Chen, J. Huff, A. Shenvi, M. Tawarmalani, R. Agrawal. Global Minimization of Total Exergy Loss of Multicomponent Distillation Configurations. AIChE Journal, 65-11 (2019) e16737. doi: 10.1002/aic.16737
Z. Jiang, R. Agrawal. Process Intensification in Multicomponent Distillation: A Review of Recent Advancements. Chemical Engineering Research and Design, 147 (2019) 122-145. doi: 10.1016/j.cherd.2019.04.023
Z. Jiang, T. J. Mathew, H. Zhang, J. Huff, U. Nallasivam, M. Tawarmalani, R. Agrawal. Global Optimization of Multicomponent Distillation Configurations: Global Minimization of Total Cost for Multicomponent Mixture Separations. Computers and Chemical Engineering, 126 (2019) 249-262. doi: 10.1016/j.compchemeng.2019.04.009
R. Tumbalam Gooty, R. Agrawal, M. Tawarmalani. An MINLP Formulation for the Optimization of Multicomponent Distillation Configurations. Computers and Chemical Engineering, 125 (2019) 13-30. doi: 10.1016/j.compchemeng.2019.02.013
2018
T. Ridha, Y. Li, E. Gencer, J. J. Siirola, J. T. Miller, F. H. Ribeiro, R. Agrawal, Valorization of Shale Gas Condensate to Liquid Hydrocarbons through Catalytic Dehydrogenation and Oligomerization. Processes 2018.6.139. doi:10.3390/pr6090139
B. Graeser, R. Agrawal, Pure phase synthesis of Cu3PS4 and Cu6PS5Cl for semiconductor applications. RSC Adv. (2018) doi: 10.1039/C8RA06241B
S. A. McClary, R. B. Balow, R. Agrawal. Role of annealing atmosphere on the crystal structure and composition of tetrahedrite–tennantite alloy nanoparticles. J. Mat. Chem. C. (2018) doi: 10.1039/C8TC02762E
Z. Jiang, G. M. Ramapriya, M. Tawarmalani, R. Agrawal. Process Intensification in Multicomponent Distillation. Chemical Engineering Transactions. 69 (2018)
R. Tumbalam Gooty, P. Mobed, M. Tawarmalani, R. Agrawal. (2018). Optimal Multicomponent Distillation Column Sequencing: Software and Case Studies. Computer Aided Chemical Engineering, 44 (2018) 223-228. doi: 10.1016/B978-0-444-64241-7.50032-X
G. M. Ramapriya, A. Selvarajah, L. E. Jimenez Cucaita, J. Huff, M. Tawarmalani, R. Agrawal. Short-Cut Methods versus Rigorous Methods for Performance-Evaluation of Distillation Configurations. Industrial & Engineering Chemistry Research, 57-22 (2018) 7726–7731. doi: 10.1021/acs.iecr.7b05214
Z. Jiang, G. M. Ramapriya, M. Tawarmalani, R. Agrawal. Minimum Energy of Multicomponent Distillation Systems Using Minimum Additional Heat and Mass Integration Sections. AIChE Journal, 64-9 (2018) 3410-3418. doi: 10.1002/aic.16189
G. M. Ramapriya, M. Tawarmalani, R. Agrawal, A systematic method to synthesize all dividing wall columns for n‐component separation: Part II. AIChE Journal, 64-2 (2018) 660-672. doi: 10.1002/aic.15963
G. M. Ramapriya, M. Tawarmalani, R. Agrawal, A systematic method to synthesize all dividing wall columns for n‐component separation: Part I. AIChE Journal, 64-2 (2018) 649-659. doi: 10.1002/aic.15964
2017
P. Murria,* C.K. Miskin,* R. Boyne, L.T. Cain, R. Yerabolu, R. Zhang, E.C. Wegener, J.T. Miller, H.I. Kenttämaa, R. Agrawal, Speciation of CuCl and CuCl2 Thiol-Amine Solutions and Characterization of Resulting Films: Implications for Semiconductor Device Fabrication, Inorg. Chem. (2017) doi: 10.1021/acs.inorgchem.
M.J. Koeper, C.J. Hages, J. V. Li, D. Levi, R. Agrawal, Metastable defect response in CZTSSe from admittance spectroscopy, Appl. Phys. Lett. 111 (2017). doi:10.1063/1.4996283
K.W. Brew, S.M. McLeod, S.M. Garner, R. Agrawal, Improving efficiencies of Cu2ZnSnS4 nanoparticle based solar cells on flexible glass substrates, Thin Solid Films. 642 (2017) 110–116. doi: 10.1016/j.tsf.2017.09.009
S.A. McClary, J. Andler, C.A. Handwerker, R. Agrawal, Solution-processed copper arsenic sulfide thin films for photovoltaic applications, J. Mater. Chem. C. 5 (2017) 6913-6916. doi: 10.1039/C7TC01920C
R.B. Balow, C.K. Miskin, M.M. Abu-Omar, R. Agrawal, Synthesis and Characterization of Cu3(Sb1-xAsx)S4 Semiconducting Nanocrystal Alloys with Tunable Properties for Optoelectronic Device Applications, Chem. Mater. J. (2017). doi: 10.1021/acs.chemmater.6b03850
E. Gençer, C. Miskin, X. Sun, M.R. Khan, P. Bermel, M. Ashraf Alam, et al., Directing solar photons to sustainably meet food, energy, and water needs, Sci. Rep. 7 (2017) 3133. doi:10.1038/s41598-017-03437-x.
E. Gencer, R. Agrawal, Synthesis of efficient solar thermal power cycles for baseload power supply, Energy Convers. Manag. (2017). doi:10.1016/j.enconman.2016.10.068.
E. Gençer, R. Agrawal, Strategy to synthesize integrated solar energy coproduction processes with optimal process intensification. Case study: Efficient solar thermal hydrogen production, Comput. Chem. Eng. (2017). doi:10.1016/j.compchemeng.2017.01.038.
2016
C.K. Miskin, A. Dubois-Camacho, M.O. Reese, R. Agrawal, A direct solution deposition approach to CdTe thin films, J. Mater. Chem. C. 4 (2016) 9167–9171. doi:10.1039/C6TC02986H.
R.B. Balow, C.K. Miskin, M.M. Abu-Omar, R. Agrawal, Synthesis and Characterization of Cu3(Sb1-xAsx)S4 Semiconducting Nanocrystal Alloys with Tunable Properties for Optoelectronic Device Applications, Chem. Mater. J. (2016). doi:10.1021/acs.chemmater.6b03850.
C.J. Hages, N.J. Carter, R. Agrawal, Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu2ZnSnSe4, J. Appl. Phys. 119 (2016). doi:10.1063/1.4939487.
C.J. Hages, M.J. Koeper, R. Agrawal, Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying, Sol. Energy Mater. Sol. Cells. 145 (2016) 342–348. doi:10.1016/j.solmat.2015.10.039.
C.J. Hages, M.J. Koeper, C.K. Miskin, K.W. Brew, R. Agrawal, Controlled grain growth for high performance nanoparticle-based kesterite solar cells., Chem. Mater. 26 (2016) 7703–7714. doi:10.1021/acs.chemmater.6b02733.
M.J. Koeper, C.J. Hages, J. V Li, D. Levi, R. Agrawal, Admittance Spectroscopy in CZTSSe: Metastability Behavior and Voltage Dependent Defect Study, in: 2016 IEEE 43rd Photovolt. Spec. Conf., Portland, OR, (2016): pp. 2200–2203. doi:10.1109/PVSC.2016.7750025.
R.B. Balow, E.P. Tomlinson, M.M. Abu-Omar, B.W. Boudouris, R. Agrawal, Solution-based synthesis and characterization of earth abundant Cu3(As,Sb)Se4 nanocrystal alloys: towards scalable room-temperature thermoelectric devices, J. Mater. Chem. A. 4 (2016) 2198–2204. doi:10.1039/C5TA07546G.
R. Zhang, S. Cho, D.G. Lim, X. Hu, E.A. Stach, C.A. Handwerker, et al., Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices, Chem. Commun. 846 (2016) 31–39. doi:10.1039/C5CC09915C.
X. Zhao, M. Lu, M.J. Koeper, R. Agrawal, Solution-processed sulfur depleted Cu(In, Ga)Se2 solar cells synthesized from a monoamine–dithiol solvent mixture, J. Mater. Chem. A. 4 (2016) 7390–7397. doi:10.1039/C6TA00533K.
X. Zhao, R. Zhang, C. Handwerker, R. Agrawal, The Potential of Amine-thiol based Solution Processing for Chalcogenide Photovoltaics, (2016) 542–544.
U. Nallasivam, V.H. Shah, A.A. Shenvi, J. Huff, M. Tawarmalani, R. Agrawal, Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm, AIChE J. 62 (2016) 2071. doi:http://dx.doi.org/10.1002/aic.15204.
G.M. Ramapriya, M. Tawarmalani, R. Agrawal, Thermal coupling links to liquid-only transfer streams: An enumeration method for new FTC dividing wall columns, AIChE J. 62 (2016) 1200. doi:http://dx.doi.org/10.1002/aic.15053.
E. Gençer, R. Agrawal, Synthesis of efficient solar thermal power cycles for baseload power supply, (2016). doi:10.1016/j.enconman.2016.10.068.
E. Gençer, R. Agrawal, A commentary on the US policies for efficient large scale renewable energy storage systems: Focus on carbon storage cycles, Energy Policy. 88 (2016) 477–484. doi:10.1016/j.enpol.2015.11.003 0301-4215/.
2015
R.B. Balow, E.J. Sheets, M.M. Abu-Omar, R. Agrawal, Synthesis and characterization of copper arsenic sulfide nanocrystals from earth abundant elements for solar energy conversion, Chem. Mater. 27 (2015) 2290–2293. doi:10.1021/acs.chemmater.5b00701.
N.J. Carter, R. Mainz, B.C. Walker, C.J. Hages, J. Just, M. Klaus, et al., The role of interparticle heterogeneities in the selenization pathway of Cu–Zn–Sn–S nanoparticle thin films: a real-time study, J. Mater. Chem. C. 3 (2015) 7128–7134. doi:10.1039/C5TC01139F.
C.J. Hages, R. Agrawal, Synthesis of CZTSSe thin Films from Nanocrystals, in: Kentaro Ito (Ed.), Copp. Zinc Tin Sulfide Based Thin Film Sol. Cells, (2015): pp. 239–270.
S.M. McLeod, C.J. Hages, N.J. Carter, R. Agrawal, Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks, Prog. Photovoltaics Res. Appl. 23 (2015) 1550–1556. doi:10.1002/pip.2588.
C.K. Miskin, W.C. Yang, C.J. Hages, N.J. Carter, C.S. Joglekar, E.A. Stach, et al., 9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks, Prog. Photovoltaics Res. Appl. 23 (2015) 654–659. doi:10.1002/pip.2472.
J.E. Moore, C. Hages, N.J. Carter, R. Agrawal, J.L. Gray, M.S. Lundstrom, Current-Voltage Analysis of Band Tail Effects in CZTSSe through Numerical Simulation, (2015).
E.J. Sheets, R.B. Balow, W.-C. Yang, E.A. Stach, R. Agrawal, Solution-based synthesis and purification of zinc tin phosphide nanowires, Nanoscale. 7 (2015) 19317–19323. doi:10.1039/C5NR05171A.
E.J. Sheets, W.-C. Yang, R.B. Balow, Y. Wang, B.C. Walker, E.A. Stach, et al., An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters, J. Mater. Res. 30 (2015) 3710–3716. doi:10.1557/jmr.2015.333.
R. Zhang, S.M. Szczepaniak, N.J. Carter, C.A. Handwerker, R. Agrawal, A versatile solution route to efficient Cu2ZnSn(S,Se)4 thin-film solar cells, Chem. Mater. 27 (2015) 2114–2120. doi:10.1021/cm504654t.
G. Madenoor Ramapriya, A.A. Shenvi, M. Tawarmalani, R. Agrawal, A New Framework for Combining a Condenser and Reboiler in a Configuration to Consolidate Distillation Columns, Ind. Eng. Chem. Res. 54 (2015) 10449–10464. doi:10.1021/acs.iecr.5b01701.
E. Gençer, M. Tawarmalani, R. Agrawal, Integrated Solar Thermal Hydrogen and Power Coproduction Process for Continuous Power Supply and Production of Chemicals, Comput. Aided Chem. Eng. 37 (2015) 2291–2296. doi:10.1016/B978-0-444-63576-1.50076-5.
E.I. Al-Musleh, D.S. Mallapragada, R. Agrawal, Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture, J. Power Sources. 274 (2015) 130–141. doi:10.1016/j.jpowsour.2014.09.184.
E. Gençer, D.S. Mallapragada, F. Maréchal, M. Tawarmalani, R. Agrawal, Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes, Proc. Natl. Acad. Sci. 112 (2015) 201513488. doi:10.1073/pnas.1513488112.
2014
N.J. Carter, W.C. Yang, C.K. Miskin, C.J. Hages, E.A. Stach, R. Agrawal, Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu-Zn-Sn-S nanocrystals, Sol. Energy Mater. Sol. Cells. 123 (2014) 189–196. doi:10.1016/j.solmat.2014.01.016.
B.K. Graeser, C.J. Hages, W.-C. Yang, N.J. Carter, C.K. Miskin, E.A. Stach, et al., Synthesis of (CuInS2)0.5(ZnS)0.5 Alloy Nanocrystals and Their Use for the Fabrication of Solar Cells via Selenization, Chem. Mater. 26 (2014) 4060–4063. doi:10.1021/cm501017z.
C.J. Hages, N.J. Carter, R. Agrawal, T. Unold, Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1-x)4 and Cu2Zn(SnyGe1-y)(SxSe1-x)4, J. Appl. Phys. 115 (2014). doi:10.1063/1.4882119.
X. Sun, C.J. Hages, N.J. Carter, J.E. Moore, R. Agrawal, Characterization of Nanocrystal – Ink based CZTSSe and CIGSSe Solar Cells using Voltage – dependent Admittance Spectroscopy, IEEE PVSC 40. 2 (2014) 1–3. doi:10.1109/PVSC.2014.6925415.
B.C. Walker, R. Agrawal, Contamination-free solutions of selenium in amines for nanoparticle synthesis, Chem. Commun. 50 (2014) 8331. doi:10.1039/c4cc02379j.
W.C. Yang, C.K. Miskin, N.J. Carter, R. Agrawal, E.A. Stach, Compositional inhomogeneity of multinary semiconductor nanoparticles: A case study of Cu2ZnSnS4, Chem. Mater. 26 (2014) 6955–6962. doi:10.1021/cm502930d.
V.H. Shah, R. Agrawal, Conceptual Design of Zeotropic Distillation Processes, in: A. Gorak, E. Sorensen (Eds.), Distill. Fundam. Princ. Vol. 1, Elsevier, (2014): pp. 271–303.
G. Madenoor Ramapriya, M. Tawarmalani, R. Agrawal, New, Useful Dividing Wall Columns for Sustainable Distillation, in: Proc. 10th Int. Conf. Distill. Absorpt., Friedrichshafen, Germany, (2014): pp. 76–81.
G.M. Ramapriya, M. Tawarmalani, R. Agrawal, Modified Basic Distillation Configurations with Intermediate Sections for Energy Savings, AIChE J. 60 (2014) 1091. doi:http://dx.doi.org/10.1002/aic.14324.
G.M. Ramapriya, M. Tawarmalani, R. Agrawal, Thermal Coupling Links to Liquid-Only Transfer Streams: A Path for New Dividing Wall Columns, AIChE J. 60 (2014) 2949. doi:http://dx.doi.org/10.1002/aic.14468.
E. Gencer, D. Mallapragada, M. Tawarmalani, R. Agrawal, Synergistic biomass and natural gas conversion to liquid fuel with reduced CO2 emissions, Comput. Aided Chem. Eng. (2014). doi:10.1016/B978-0-444-63433-7.50072-9.
E.I. Al-musleh, D.S. Mallapragada, R. Agrawal, Continuous baseload renewable power using chemical refrigeration cycles, Comput. Chem. Eng. 71 (2014) 591–601. doi:10.1016/j.compchemeng.2014.10.002.
E. Gençer, E. Al-musleh, D.S. Mallapragada, R. Agrawal, Uninterrupted Renewable Power through Chemical Storage Cycles, Curr. Opin. Chem. Eng. 5 (2014) 29–36. doi:10.1016/j.coche.2014.04.001.
D.S. Mallapragada, R. Agrawal, Limiting and achievable efficiencies for solar thermal hydrogen production, Int. J. Hydrogen Energy. 39 (2014) 62–75. doi:10.1016/j.ijhydene.2013.10.075.
E.I. Al-musleh, D.S. Mallapragada, R. Agrawal, Continuous power supply from a baseload renewable power plant, Appl. Energy. 122 (2014) 83–93. doi:10.1016/j.apenergy.2014.02.015.
D.S. Mallapragada, G. Duan, R. Agrawal, From shale gas to renewable energy based transportation solutions, Energy Policy. 67 (2014) 499–507. doi:10.1016/j.enpol.2013.12.056.
2013
N.J. Carter, C.J. Hages, J.E. Moore, S.M. McLeod, C.K. Miskin, C. Joglekar, et al., Analysis of temperature-dependent current-voltage characteristics for CIGSSe and CZTSSe thin film solar cells from nanocrystal inks, Conf. Rec. IEEE Photovolt. Spec. Conf. (2013) 3062–3065. doi:10.1109/PVSC.2013.6745107.
S. Dongaonkar, S. Loser, E.J. Sheets, K. Zaunbrecher, R. Agrawal, T.J. Marks, et al., Universal statistics of parasitic shunt formation in solar cells, and its implications for cell to module efficiency gap, Energy Environ. Sci. 6 (2013) 782–787. doi:10.1039/c3ee24167j.
C.J. Hages, N.J. Carter, J. Moore, S.M. McLeod, C.K. Miskin, C. Joglekar, et al., Device comparison of champion nanocrystal-ink based CZTSSe and CIGSSe solar cells: Capacitance spectroscopy, Conf. Rec. IEEE Photovolt. Spec. Conf. (2013) 1966–1971. doi:10.1109/PVSC.2013.6744856.
R. Mainz, B.C. Walker, S.S. Schmidt, O. Zander, A. Weber, H. Rodriguez-Alvarez, et al., Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors., Phys. Chem. Chem. Phys. 15 (2013) 18281–9. doi:10.1039/c3cp53373e.
C.K. Miskin, N.J. Carter, W.C. Yang, C.J. Hages, E. Stach, R. Agrawal, High efficiency Cu2ZnSnS4 nanocrystal ink solar cells through improved nanoparticle synthesis and selenization, Conf. Rec. IEEE Photovolt. Spec. Conf. (2013) 34–37. doi:10.1109/PVSC.2013.6744093.
J. Moore, C.J. Hages, N. Carter, R. Agrawal, M. Lundstrom, The physics of Vbi-related IV crossover in thin film solar cells: Applications to ink deposited CZTSSe, Conf. Rec. IEEE Photovolt. Spec. Conf. (2013) 3255–3259. doi:10.1109/PVSC.2013.6745146.
B.C. Walker, B.G. Negash, S.M. Szczepaniak, K.W. Brew, R. Agrawal, CZTSe devices fabricated from CZTSSe nanoparticles, Conf. Rec. IEEE Photovolt. Spec. Conf. (2013) 2548–2551. doi:10.1109/PVSC.2013.6744994.
U. Nallasivam, V.H. Shah, A.A. Shenvi, M. Tawarmalani, R. Agrawal, Global Optimization of Multicomponent Distillation Configurations: 1. Need for a Reliable Global Optimization Algorithm, AIChE J. 59 (2013) 971. doi:http://dx.doi.org/10.1002/aic.13875.
A.A. Shenvi, V.H. Shah, R. Agrawal, New Multicomponent Distillation Configurations with Simultaneous Heat and Mass Integration, AIChE J. 59 (2013) 272. doi:http://dx.doi.org/10.1002/aic.13971.
D. Mallapragada, R. Agrawal, Role of Natural Gas in America’s Energy Future: Focus on Transportation, Glob. Policy Res. Inst. Policy Briefs. 1 (2013).
E.I. Al-musleh, D.S. Mallapragada, R. Agrawal, GWh Level Renewable Energy Storage and Supply using Liquid CO2, in: Comput. Aided Chem. Eng., (2013): pp. 415–420. doi:10.1016/B978-0-444-63234-0.50070-1.
D.S. Mallapragada, N.R. Singh, V. Curteanu, R. Agrawal, Sun-to-fuel assessment of routes for fixing CO2 as liquid fuel, Ind. Eng. Chem. Res. 52 (2013) 5136–5144. doi:10.1021/ie301125c.
Q. Guo, G.M. Ford, R. Agrawal and H.W. Hillhouse. Ink formulation and low‐temperature incorporation of sodium to yield 12% efficient Cu (In, Ga)(S, Se) 2 solar cells from sulfide nanocrystal inks. Progress in Photovoltaics: Research and Applications, 21-1 (2013) 64-71. doi:10.1002/pip.2200
2012
S. Dongaonkar, E. Sheets, R. Agrawal, M.A. Alam, Reverse stress metastability of shunt current in CIGS solar cells, Conf. Rec. IEEE Photovolt. Spec. Conf. (2012) 868–872. doi:10.1109/PVSC.2012.6317740.
Q. Guo, G.M. Ford, W.C. Yang, C.J. Hages, H.W. Hillhouse, R. Agrawal, Enhancing the performance of CZTSSe solar cells with Ge alloying, Sol. Energy Mater. Sol. Cells. 105 (2012) 132–136. doi:10.1016/j.solmat.2012.05.039.
C.J. Hages, J.E. Moore, S. Dongaonkar, M.A. Alam, M.S. Lundstrom, R. Agrawal, Band Alignment Limitations and Light-Soaking Effects in CZTSSe and CZTGeSSe, in: Proc. 38th IEEE Photovolt. Spec. Conf, Austin, TX, (2012): pp. 002658–002663.
M. Kar, H.W. Hillhouse, R. Agrawal, Chemical liquid deposition of CuInSe2 and CuIn(S,Se)2 films for solar cells, Thin Solid Films. 520 (2012) 5431–5437. doi:10.1016/j.tsf.2012.04.012.
J. Moore, C. Hages, M. Lundstrom, R. Agrawal, Influence of Ge doping on defect distributions of Cu2Zn(SnxGe1-x) (SySe1-y) fabricated by nanocrystal ink deposition with selenization, Conf. Rec. IEEE Photovolt. Spec. Conf. (2012) 1475–1480. doi:10.1109/PVSC.2012.6317875.
B. Walker, R. Agrawal, Grain growth enhancement of selenide CIGSe nanoparticles to densified films using copper selenides, Conf. Rec. IEEE Photovolt. Spec. Conf. (2012) 2654–2657. doi:10.1109/PVSC.2012.6318141.
A.A. Shenvi, V.H. Shah, J.A. Zeller, R. Agrawal, A Synthesis Method for Multicomponent Distillation Sequences with Fewer Columns, AIChE J. 58 (2012) 2479. doi:http://dx.doi.org/10.1002/aic.12752.
N.R. Singh, D.S. Mallapragada, R. Agrawal, W.E. Tyner, Economic analysis of novel synergistic biofuel (H2Bioil) processes, Biomass Convers. Biorefinery. 2 (2012) 141–148. doi:10.1007/s13399-012-0043-5.
2011
G.M. Ford, Q. Guo, R. Agrawal, H.W. Hillhouse, CuIn(S,Se)2 thin film solar cells from nanocrystal inks: Effect of nanocrystal precursors, Thin Solid Films. 520 (2011) 523–528. doi:10.1016/j.tsf.2011.08.007.
G.M. Ford, Q. Guo, R. Agrawal, H.W. Hillhouse, Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device FabricationChem. Mater. 23 (2011) 8–11. doi:10.1021/cm2002836.
Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, A generalized and robust method for efficient thin film photovoltaic devices from multinary sulfide nanocrystal inks, Conf. Rec. IEEE Photovolt. Spec. Conf. (2011) 003522–003526. doi:10.1109/PVSC.2011.6186708.
M. Kar, R. Agrawal, H.W. Hillhouse, Formation pathway of CuInSe2 nanocrystals for solar cells, J. Am. Chem. Soc. 133 (2011) 17239–17247. doi:10.1021/ja204230d.
V.H. Shah, R. Agrawal, Are All Thermal Coupling Links between Multicomponent Distillation Columns Useful from an Energy Perspective?, Ind. Eng. Chem. 50-3 (2011) 1770-1777. doi:10.1021/ie101768c.
A.A. Shenvi, D.M. Herron, R. Agrawal, Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation, Ind. Eng. Chem. Res. 50 (2011) 119–130. doi:10.1021/ie101698f.
D.S. Mallapragada, N.R. Singh, R. Agrawal, Energy Systems Analysis for a Renewable Transportation Sector, Elsevier B.V., (2011). doi:10.1016/B978-0-444-54298-4.50156-2.
2010
S. Dongaonkar, J.D. Servaites, G.M. Ford, S. Loser, J. Moore, R.M. Gelfand, et al., Universality of non-Ohmic shunt leakage in thin-film solar cells, J. Appl. Phys. 108 (2010). doi:10.1063/1.3518509.
G.M. Ford, Q. Guo, R. Agrawal, H.W. Hillhouse, Solar cells via selenization of CuInS2 nanocrystals: Effect of synthesis precursor, 35th IEEE Photovolt. Spec. Conf. (2010) 3417–3419. doi:10.1109/PVSC.2010.5614584.
Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, et al., Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals, J. Am. Chem. Soc. 132 (2010) 17384–17386. doi:10.1021/ja108427b.
V.H. Shah, R. Agrawal, A Matrix Method for Multicomponent Distillation Sequences, AIChE J. 56 (2010) 1759. doi:http://dx.doi.org/10.1002/aic.12118.
Giridhar, R. Agrawal, Synthesis of distillation configurations: I. Characteristics of a good search space, Comput. Chem. Eng. 34 (2010) 73–83. doi:10.1016/j.compchemeng.2009.05.003.
Giridhar, R. Agrawal, Synthesis of distillation configurations. II: A search formulation for basic configurations, Comput. Chem. Eng. 34 (2010) 84–95. doi:10.1016/j.compchemeng.2009.05.004.
R. Pathare, R. Agrawal, Design of membrane cascades for gas separation, J. Memb. Sci. 364 (2010) 263–277. doi:10.1016/j.memsci.2010.08.029.
V.H. Shah, R. Agrawal, Multicomponent Distillation Configurations with Large Energy Savings, in: Proc. Distill. Absorpt., (2010).
R. Agrawal, N.R. Singh, Solar Energy to Biofuels, Annu. Rev. Chem. Biomol. Eng. 1 (2010) 343–364. doi:10.1146/annurev-chembioeng-073009-100955.
N.R. Singh, W.N. Delgass, F.H. Ribeiro, R. Agrawal, Estimation of liquid fuel yields from biomass, Environ. Sci. Technol. (2010). doi:10.1021/es100316z.
R. Agrawal, D.S. Mallapragada, Chemical Engineering in a Solar Energy-Drive Sustainable Future, AIChE. 56 (2010) 2762–2768. doi:10.1002/aic.12435.
2009
Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, Sulfide Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films and Their Photovoltaic Performance, Nano Lett. 9 (2009) 3060–3065. doi:10.1021/nl901538w.
Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, Selenization of copper indium gallium disulfide nanocrystal films for thin film solar cells, Conf. Rec. IEEE Photovolt. Spec. Conf. (2009) 002126–002129. doi:10.1109/PVSC.2009.5411426.
Q. Guo, H.W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, J. Am. Chem. Soc. 131 (2009) 11672–11673. doi:10.1021/ja904981r.
R. Agrawal, N.R. Singh, Synergistic routes to liquid fuel for a petroleum-deprived future, AIChE J. (2009). doi:10.1002/aic.11785.
R. Agrawal, N.R. Singh, F.H. Ribeiro, W.N. Delgass, D.F. Perkis, W.E. Tyner, Synergy in the hybrid thermochemical-biological processes for liquid fuel production, Comput. Chem. Eng. 33 (2009) 2012–2017. doi:10.1016/j.compchemeng.2009.06.026.
2008 and Previous
Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, et al., Development of CulnSe2 nanocrystal and nanoring inks for low-cost solar cells, Nano Lett. 8 (2008) 2982–2987. doi:10.1021/nl802042g.
R. Agrawal, N.R. Singh, F.H. Ribeiro, W.N. Delgass, Sustainable fuel for the transportation sector, PNAS. 104 (2007) 4828–4833. doi:10.1073/pnas.0609921104.
R.D. Noble, R. Agrawal, Separations research needs for the 21st century, Ind. Eng. Chem. Res. 44 (2005) 2887–2892. doi:10.1021/ie0501475.
Agrawal, Synthesis of multicomponent distillation column configurations, AIChE J. 49 (2003) 379–401. doi:10.1002/aic.690490210.
Agrawal, A.A. Brostow, D.M. Herron, M.J. Robert, Hybrid Cryogenic Liquefaction Processes, in: Proc. 21st Int. Congr. Refrig., Washington DC, (2003): p. ICR03090.
Z.T. Fidkowski, R. Agrawal, Multicomponent thermally coupled systems of distillation columns at minimum reflux, AIChE J. 47 (2001) 2713–2724. doi:10.1002/aic.690471211.
R. Agrawal, D.M. Herron, Feed Pretreatment for Binary Distillation Efficiency Improvement, in: R. Gani, S.B. Jorgensen (Eds.), Eur. Symp. Comput. Aided Process Eng. – 11, Elsevier, (2001): p. 339.
R. Agrawal, Multicomponent distillation columns with partitions and multiple reboilers and condensers, Ind. Eng. Chem. Res. 40 (2001) 4258–4266. doi:10.1021/ie000315n.
R. Agrawal, Separations: Perspective of a process developer/designer, AIChE J. 47 (2001) 967–971. doi:10.1002/aic.690470503.
R. Agrawal, Thermally coupled distillation with reduced number of intercolumn vapor transfers, AIChE J. 46 (2000) 2198–2210. doi:10.1002/aic.690461112.
R. Agrawal, Multieffect distillation for thermally coupled configurations, AIChE J. 46 (2000) 2211–2224. doi:10.1002/aic.690461113.
R. Agrawal, Z.T. Fidkowski, Improving Efficiency of Distillation with New Thermally Coupled Configurations of Columns, in: Found. Comput. Process Des. AIChE Symp. Ser. No. 323, Vol. 96, (2000): p. 381.
R. Agrawal, A method to draw fully thermally coupled distillation column configurations for multicomponent distillation, Chem. Eng. Res. Des. 78 (2000) 454–464. doi:10.1205/026387699526449.
R. Agrawal, D.M. Herron, Air Liquefaction: Distillation, Encycl. Sep. Sci. (2000) 1895.
R. Agrawal, Z.T. Fidkowski, More Operable Arrangements of Thermally Coupled Distillation Column, in: M. D. Pritchett, H. Z. Kister (Eds.), Distill. Horizons New Millenn. AIChE Top. Conf. Prepr., (1999): p. 105.
R. Agrawal, Z.T. Fidkowski, Thermodynamically efficient systems for ternary distillation, Ind. Eng. Chem. Res. 38 (1999) 2065–2074. doi:10.1021/ie980531k.
R. Agrawal, D.M. Herron, Production of Low-Purity Oxygen in the Next Millennium, in: 20th IIR Proc., (1999).
R. Agrawal, Z.T. Fidkowski, New thermally coupled schemes for ternary distillation, AIChE J. 45 (1999) 485–496. doi:10.1002/aic.690450306.
R. Agrawal, More Operable Fully Thermally Coupled Distillation Column Configurations for Multicomponent Distillation, Configurations. 77 (1999) 543–553.
R. Agrawal, Z.T. Fidkowski, Ternary distillation schemes with partial reboiler or partial condenser, Ind. Eng. Chem. Res. 37 (1998) 3455–3462.
R. Agrawal, Z.T. Fidkowski, Improved direct and indirect systems of columns for ternary distillation, AIChE J. 44 (1998) 823–830. doi:10.1002/aic.690440407.
R. Agrawal, Z.T. Fidkowski, Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations, Ind. Eng. Chem. Res. 37 (1998) 3444–3454. doi:10.1021/ie980062m.
R. Agrawal, Z.T. Fidkowski, More operable arrangements of fully thermally coupled distillation columns, AIChE J. 44 (1998) 2565–2568. doi:10.1002/aic.690441124.
R. Agrawal, J. Xu, Advanced Cryogenic Air Separation Plants for Carbonaceous Fuel-Based Ammonia Synthesis, in: Cryog. Refrig. Proc. ICCR’98, Hangzhou, China, (1998): p. 538.
R. Agrawal, D.M. Herron, Intermediate Reboiler and Condenser Arrangement for Binary Distillation Columns, AIChE J. 44 (1998) 1316–1324.
R. Agrawal, D.M. Herron, Efficient Use of an Intermediate Reboiler or Condenser in a Binary Distillation, AIChE J. 44 (1998) 1303-1315.
R. Agrawal, D.M. Herron, Optimal thermodynamic feed conditions for distillation of ideal binary mixtures, AIChE J. 43 (1997) 2984–2996. doi:10.1002/aic.690431111.
R. Agrawal, H.C. Rowles, G.E. Kinard, Cryogenic Distillation, in: D. M. Ruthven (Ed.), Encycl. Sep. Technol., Wiley, New York, (1997): p. 379.
R. Agrawal, D.W. Woodward, A.K. Modi, Co-production of High Purity Products Using Thermally-Linked Columns, Distill. Absorpt. 1997, Inst. Chem. Eng. Symp. Ser. 142 (1997) 511.
R. Agrawal, A simplified method for the synthesis of gas separation membrane cascades with limited numbers of compressors, Chem. Eng. Sci. 52 (1997) 1029–1044. doi:10.1016/S0009-2509(96)00376-4.
R. Agrawal, Z.T. Fidkowski, J. Xu, Prefractionation to reduce energy consumption in distillation without changing utility temperatures, AIChE J. 42 (1996) 2118–2127.
R. Agrawal, J.G. Xu, Gas-separation membrane cascades utilizing limited numbers of compressors, AIChE J. 42 (1996) 2141–2154. doi:10.1002/aic.690420806.
R. Agrawal, Z.T. Fidgowski, On the use of intermediate reboilers in the rectifying and condensers in the stripping section of a distillation column, Ind. Eng. Chem. Res. 35 (1996) 2801–2807. doi:10.1021/ie9601312.
R. Agrawal, Production of Ultra-high Purity Nitrogen Free of Light Impurities, in: Proc. MUST ’96, Munich Meet. Air Sep. Technol., (1996): p. 25.
R. Agrawal, J. Xu, A Systematic Procedure for Drawing Gas Separation Membrane Cascades with Limited Number of Compressors, in: Proc. ICOM’96, 1996 Int. Congr. Membr. Membr. Process., Yokohama, Japan, (1996): p. 288.
R. Agrawal, Synthesis of Distillation Column Configurations for a Multicomponent Separation, Ind. Eng. Chem. Res. 35 (1996) 1059–1071. doi:10.1021/ie950323h.
J. Xu, R. Agrawal, Gas separation membrane cascades I. One-compressor cascades with minimal exergy losses due to mixing, J. Memb. Sci. 112 (1996) 115–128. doi:10.1016/0376-7388(95)00272-3.
Products, Membrane Separation Process Analysis and Design Strategies Based on Thermodynamic Efficiency of Permeation, Chem. Eng. Sci. 51 (1996) 365–385.
R. Agrawal, Membrane cascade schemes for multicomponent gas separation, Ind. Eng. Chem. Res. 35 (1996) 3607–3617. doi:10.1021/ie960160c.
R. Agrawal, J. Xu, Gas separation membrane cascades II. Two-compressor cascades, J. Memb. Sci. 112 (1996) 129–146. doi:10.1016/0376-7388(95)00273-1.
J. Xu, R. Agrawal, Local Thermodynamic Efficiency of Permeation and Strategies for Efficiency Improvement for Membrane Gas Separation, in: 1995 Top. Conf. Recent Dev. Futur. Oppor. Sep. Technol. Am. Inst. Chem. Eng., (1995): p. 351.
R. Agrawal, Production of Ultrahigh-Purity Oxygen : A Distillation Method for the Coproduction of the Heavy Key Component Stream Free of, (1995) 3947–3955.
R. Fidkowski, Zbigniew T and Agrawal, Utilization of Waste Heat Stream in Distillation, 34 (1995) 1287–1293.
R. Agrawal, D.W. Woodward, Efficient Process to Produce Tonnage Nitrogen, in: 19th Int. Congr. Refrig., The Hauge, The Netherlands, (1995): p. 1011.
R. Agrawal, J. Xu, Separation devices for gas mixing, AIChE J. 41 (1995) 2585–2602. doi:10.1002/aic.690411208.
R. Agrawal, T.F. Yee, Heat Pumps for Thermally Linked Distillation Columns: An Exercise for Argon Production from Air, Ind. Eng. Chem. Res. 33 (1994) 2717–2730.
R. Agrawal, D.W. Woodward, T.F. Yee, Argon production from air distillation: Use of a heat pump in a ternary distillation with a side rectifier, Gas Sep. Purif. 8 (1994) 37–43. doi:10.1016/0950-4214(94)85006-2.
R. Agrawal, D.W. Woodward, K.A. Ludwig, D.L. Bennett, Impact of Low Pressure Drop Structure Packing on Air Distillation, in: Inst. Chem. Eng. Symp. Ser. No. 128, (1992): p. 125.
R. Agrawal, R.M. Thorogood, Production of medium pressure nitrogen by cryogenic air separation, Gas Sep. Purif. 5 (1991) 203–209. doi:10.1016/0950-4214(91)80025-Z.
R. Agrawal, D.W. Woodward, Efficient Cryogenic Nitrogen Generators – An Exergy Analysis, Gas Sep. Purif. 5 (1991) 139–150.
R. Agrawal, D.W. Woodward, Impact of Low Pressure Drop Structured Packing on Argon Production and Purification from Air, in: Proc. XVIIIth Int. Congr. Refrig., Montreal, Canada, (1991): p. 162.
R. Agrawal, W.T. Kleinberg, Efficient Processes to Produce Ultra High Purity Nitrogen from Air, in: Proc. XVIIIth Int. Congr. Refrig., Montreal, Canada, (1991): p. 156.
J.S. Choe, R. Agrawal, S.R. Auvil, Membrane/Adsorption Hybrids for Gas Separation, in: AIChE Symp. Ser., Houston, (1991).
R. Agrawal, S.R. Auvil, J.S. Choe, D.W. Woodward, Membrane/cryogenic hybrid scheme for argon production from air, Gas Sep. Purif. 4 (1990) 75–80. doi:10.1016/0950-4214(90)80031-F.
J.S. Choe, R. Agrawal, S.R. Auvil, R. Srinivasan, R.M. Thorogood, Membrane/Adsorption Hybrids for Gas Separation, in: Proc. 1990 Int. Congr. Membr. Membr. Process., (1990): p. 995.
R. Agrawal, D.W. Woodward, W.T. Kleinberg, K.B. Wilson, Efficient Processes to Produce Nitrogen by Cryogenic Air Separation, in: Proc. Low Temp. Cryog. Conf., Southampton, U.K., (1990): p. 4.
J.M. Abrardo, R. Agrawal, A.R. Smith, D.W. Woodward, Oxygen Plants for IGCC, in: C. F. Gottzmann, L. C. Kun, K. D. Timmerhaus, L. Wenzel (Eds.), Seventh Intersoc. Cryog. Symp., (1989): p. 37.
R. Agrawal, D.C. Erickson, D.W. Woodward, High Efficiency Processes for Cryogenic Air Separation, in: C. F. Gottzmann, L. C. Kun, K. D. Timmerhaus, L. Wenzel (Eds.), Seventh Intersoc. Cryog. Symp., (1989): p. 33.
J.S. Choe, R. Agrawal, S.R. Auvil, T.R. White, Membrane/Cryogenic Hybrid Systems for Helium Purification, in: Proc. Sixty-Seventh Gas Process. Assoc. Annu. Conv., Dallas, Texas, (1988): p. 251.
R. Agrawal, S.R. Auvil, S.P. DiMartino, J.S. Choe, J.A. Hopkins, Membrane/cryogenic hybrid processes for hydrogen purification, Gas Sep. Purif. 2 (1988) 9–15. doi:10.1016/0950-4214(88)80036-7.
R. Agrawal, New Pressure Drop Correlation for Sieve Tray Distillation Columns, AIChE J. 29 (1983) 434–442.