Skip navigation

Publications

  1. N. Babusis et al., “One-dimensional mapping of femtosecond laser filaments using coherent microwave scattering,” Physical Review E, vol. 110, no. 5, Nov. 2024, doi: 10.1103/PhysRevE.110.055206.

  2. Y. Zhang, L. Organski, A. Shashurin, and K. K. Ostrikov, “Long-Duration Test of Coaxial Low-Energy Surface Flashover Ignitor,” Journal of Propulsion and Power, vol. 39, no. 5, pp. 688–695, Sep. 2023, doi: 10.2514/1.B39071.

  3. A. Shashurin, A. R. Patel, X. Wang, A. Sharma, and A. Ranjan, “Coherent microwave scattering for diagnostics of small plasma objects: A review,” Physics of Plasmas, vol. 30, no. 6, Jun. 2023, doi: 10.1063/5.0147927.

  4. A. R. Patel, S. L. B. Karunarathne, N. Babusis, and A. Shashurin, “The application of coherent microwave scattering and multiphoton ionization for diagnostics of electric propulsion systems,” Journal of Physics D: Applied Physics, vol. 56, no. 18, May 2023, doi: 10.1088/1361-6463/acc25b.

  5. A. Patel et al., “Ionization rate and plasma dynamics at 3.9 micron femtosecond photoionization of air,” Physical Review E, vol. 106, no. 5, Nov. 2022, doi: 10.1103/PhysRevE.106.055210.

  6. L. Organski et al., “Inner surface modification of polyethylene tubing induced by dielectric barrier discharge plasma,” Journal of Vacuum Science & Technology A, vol. 40, no. 6, Dec. 2022, doi: 10.1116/5.0119895.

  7. A. Ranjan, A. Patel, X. Wang, and A. Shashurin, “Thomson microwave scattering for diagnostics of small plasma objects enclosed within glass tubes,” Review of Scientific Instruments, vol. 93, no. 11, Nov. 2022, doi: 10.1063/5.0111685.

  8. X. Wang, A. Patel, and A. Shashurin, “Initial transient stage of pin-to-pin nanosecond repetitively pulsed discharges in air,” Journal of Applied Physics, vol. 132, no. 1, Jul. 2022, doi: 10.1063/5.0093794.

  9. A. R. Patel et al., “Plasma Sources Science and Electron momentum-transfer collision frequency measurements in small plasma objects via coherent microwave scattering Electron Momentum-Transfer Collision Frequency Measurements in Small Plasma Objects Via Coherent Microwave Scattering,” 2022.

  10. X. Wang, A. Patel, and A. Shashurin, “Combined microwave and laser Rayleigh scattering diagnostics for pin-to-pin nanosecond discharges,” Journal of Applied Physics, vol. 129, no. 18, May 2021, doi: 10.1063/5.0054202.

  11. X. Wang, A. Patel, S. Bane, and A. Shashurin, “Experimental study of atmospheric pressure single-pulse nanosecond discharge in pin-to-pin configuration,” Journal of Applied Physics, vol. 130, no. 10, Sep. 2021, doi: 10.1063/5.0060252.

  12. A. R. Patel, A. Ranjan, X. Wang, M. N. Slipchenko, M. N. Shneider, and A. Shashurin, “Thomson and collisional regimes of in-phase coherent microwave scattering off gaseous microplasmas,” Scientific Reports, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-02500-y.

  13. X. Wang and A. Shashurin, “Gas thermometry by optical emission spectroscopy enhanced with probing nanosecond plasma pulse,” AIAA Journal, vol. 58, no. 7. American Institute of Aeronautics and Astronautics Inc., pp. 3245–3249, 2020. doi: 10.2514/1.J059511.

  14. A. R. Patel, Y. Zhang, and A. Shashurin, “Liquid-fed pulsed plasma thruster with low-energy surface flashover igniter for propelling nanosatellites,” Journal of Propulsion and Power, vol. 36, no. 5, pp. 715–720, 2020, doi: 10.2514/1.B37800.

  15. A. Sharma et al., “Diagnostics of CO concentration in gaseous mixtures at elevated pressures by resonance enhanced multi-photon ionization and microwave scattering,” Journal of Applied Physics, vol. 128, no. 14, Oct. 2020, doi: 10.1063/5.0024194.

  16. A. R. Patel, Y. Zhang, and A. Shashurin, “Liquid-fed pulsed plasma thruster with low-energy surface flashover igniter for propelling nanosatellites,” Journal of Propulsion and Power, vol. 36, no. 5, pp. 715–720, 2020, doi: 10.2514/1.B37800.

  17. Y. Zhang, O. Dary, and A. Shashurin, “Low energy surface flashover for initiation of electric propulsion devices,” Plasma Research Express, vol. 1, no. 1, Mar. 2019, doi: 10.1088/2516-1067/aaf659.

  18. A. Sharma, M. N. Slipchenko, K. A. Rahman, M. N. Shneider, and A. Shashurin, “Direct measurement of electron numbers created at near-infrared laser-induced ionization of various gases,” Journal of Applied Physics, vol. 125, no. 19, May 2019, doi: 10.1063/1.5082551.

  19. X. Wang, A. Khomenko, and A. Shashurin, “Enhancement of positive pulsed corona by dielectric enclosure,” AIP Advances, vol. 9, no. 10, Oct. 2019, doi: 10.1063/1.5117830.

  20. A. Dhiman, A. Sharma, A. Shashurin, and V. Tomar, “Strontium Titanate Composites for Microwave-Based Stress Sensing,” JOM, vol. 70, no. 9, pp. 1811–1815, Sep. 2018, doi: 10.1007/s11837-018-2973-2.

  21. X. Wang, P. Stockett, R. Jagannath, S. Bane, and A. Shashurin, “Time-resolved measurements of electron density in nanosecond pulsed plasmas using microwave scattering,” Plasma Sources Science and Technology, vol. 27, no. 7, Jul. 2018, doi: 10.1088/1361-6595/aacc06.

  22. A. Sharma, M. N. Slipchenko, M. N. Shneider, X. Wang, K. A. Rahman, and A. Shashurin, “Counting the electrons in a multiphoton ionization by elastic scattering of microwaves,” Scientific Reports, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-21234-y.

  23. X. Wang and A. Shashurin, “DC-driven plasma gun: Self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns,” Plasma Sources Science and Technology, vol. 26, no. 2, Feb. 2017, doi: 10.1088/1361-6595/aa52fc.

  24. X. Wang and A. Shashurin, “Study of atmospheric pressure plasma jet parameters generated by DC voltage driven cold plasma source,” Journal of Applied Physics, vol. 122, no. 6, Aug. 2017, doi: 10.1063/1.4986636.